a30p mutation
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Michele Perni ◽  
Annemieke van der Goot ◽  
Ryan Limbocker ◽  
Tjakko J. van Ham ◽  
Francesco A. Aprile ◽  
...  

The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research.


2019 ◽  
Vol 28 (14) ◽  
pp. 2283-2294 ◽  
Author(s):  
Xue-Ming Zhang ◽  
Sabina Anwar ◽  
Yongsoo Kim ◽  
Jennifer Brown ◽  
Isabelle Comte ◽  
...  

Abstract Parkinson's disease (PD) is associated with olfactory defects in addition to dopaminergic degeneration. Dopaminergic signalling is necessary for subventricular zone (SVZ) proliferation and olfactory bulb (OB) neurogenesis. Alpha-synuclein (α-syn or Snca) modulates dopaminergic neurotransmission, and SNCA mutations cause familial PD, but how α-syn and its mutations affect adult neurogenesis is unclear. To address this, we studied a bacterial artificial chromosome transgenic mouse expressing the A30P SNCA familial PD point mutation on an Snca−/− background. We confirmed that the SNCA-A30P transgene recapitulates endogenous α-syn expression patterns and levels by immunohistochemical detection of endogenous α-syn in a wild-type mouse and transgenic SNCA-A30P α-syn protein in the forebrain. The number of SVZ stem cells (BrdU+GFAP+) was decreased in SNCA-A30P mice, whereas proliferating (phospho-histone 3+) cells were decreased in Snca−/− and even more so in SNCA-A30P mice. Similarly, SNCA-A30P mice had fewer Mash1+ transit-amplifying SVZ progenitor cells but Snca−/− mice did not. These data suggest the A30P mutation aggravates the effect of Snca loss in the SVZ. Interestingly, calbindin+ and calretinin (CalR)+ periglomerular neurons were decreased in both Snca−/−, and SNCA-A30P mice but tyrosine hydroxylase+ periglomerular OB neurons were only decreased in Snca−/− mice. Cell death decreased in the OB granule layer of Snca−/− and SNCA-A30P mice. In the same region, CalR+ numbers increased in Snca−/− and SNCA-A30P mice. Thus, α-syn loss and human A30P SNCA decrease SVZ proliferation, cell death in the OB and differentially alter interneuron numbers. Similar disruptions in human neurogenesis may contribute to the olfactory deficits, which are observed in PD.


2013 ◽  
Vol 126 (1) ◽  
pp. 131-144 ◽  
Author(s):  
Therese Fagerqvist ◽  
Veronica Lindström ◽  
Eva Nordström ◽  
Anna Lord ◽  
Stina M. E. Tucker ◽  
...  

2006 ◽  
Vol 80 (5) ◽  
pp. 2396-2404 ◽  
Author(s):  
Wen Jun Liu ◽  
Xiang Ju Wang ◽  
David C. Clark ◽  
Mario Lobigs ◽  
Roy A. Hall ◽  
...  

ABSTRACT Alpha/beta interferons (IFN-α/β) are key mediators of the innate immune response against viral infection. The ability of viruses to circumvent IFN-α/β responses plays a crucial role in determining the outcome of infection. In a previous study using subgenomic replicons of the Kunjin subtype of West Nile virus (WNVKUN), we demonstrated that the nonstructural protein NS2A is a major inhibitor of IFN-β promoter-driven transcription and that a single amino acid substitution in NS2A (Ala30 to Pro [A30P]) dramatically reduced its inhibitory effect (W. J. Liu, H. B. Chen, X. J. Wang, H. Huang, and A. A. Khromykh, J. Virol. 78:12225-12235). Here we show that incorporation of the A30P mutation into the WNVKUN genome results in a mutant virus which elicits more rapid induction and higher levels of synthesis of IFN-α/β in infected human A549 cells than that detected following wild-type WNVKUN infection. Consequently, replication of the WNVKUNNS2A/A30P mutant virus in these cells known to be high producers of IFN-α/β was abortive. In contrast, both the mutant and the wild-type WNVKUN produced similar-size plaques and replicated with similar efficiency in BHK cells which are known to be deficient in IFN-α/β production. The mutant virus was highly attenuated in neuroinvasiveness and also attenuated in neurovirulence in 3-week-old mice. Surprisingly, the mutant virus was also partially attenuated in IFN-α/βγ receptor knockout mice, suggesting that the A30P mutation may also play a role in more efficient activation of other antiviral pathways in addition to the IFN response. Immunization of wild-type mice with the mutant virus resulted in induction of an antibody response of similar magnitude to that observed in mice immunized with wild-type WNVKUN and gave complete protection against challenge with a lethal dose of the highly virulent New York 99 strain of WNV. The results confirm and extend our previous original findings on the role of the flavivirus NS2A protein in inhibition of a host antiviral response and demonstrate that the targeted disabling of a viral mechanism for evading the IFN response can be applied to the development of live attenuated flavivirus vaccine candidates.


Neurology ◽  
2001 ◽  
Vol 56 (10) ◽  
pp. 1355-1362 ◽  
Author(s):  
R. Kruger ◽  
W. Kuhn ◽  
K.L. Leenders ◽  
R. Sprengelmeyer ◽  
T. Muller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document