southwest vortex
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chao Li ◽  
Yan Li ◽  
Shenming Fu ◽  
Xingwen Jiang ◽  
Xiaofang Wang ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 556
Author(s):  
Hui Ma ◽  
Xiaolei Ma ◽  
Yanwei Jing ◽  
Guiping Wu

The abnormal 2020 Meiyu season caused the worst disasters over the Yangtze River Valley in recent decades. Of these, the Sichuan Basin (SCB) and its surrounding regions were one of the most severely affected areas. Disastrous weather frequently occurs in these regions, with a large proportion of it closely related to the southwest vortices (SWVs). In order to further the understanding of SWV generation, this study investigated the formation mechanisms of a quasi-stationary SWV (by using two sets of vorticity budgets), which caused torrential rainfall (resulting in flash floods in Sichuan and Chongqing), lightning activities (causing tripping incidents of transmission lines in Sichuan) and strong winds (leading to shutting down of wind turbines in Hubei). Results showed that the SWV was generated in a favorable background environment, during which an upper-tropospheric divergence and a middle-tropospheric warm advection appeared over the SCB. Trajectory analyses and vorticity budget showed that the air particles that came from the lower troposphere of the regions south of the Tibetan Plateau dominated the SWV formation. These air particles experienced notable ascending during which an increase in their cyclonic vorticity occurred mainly due to convergence-related stretching, whereas, tilting mainly decelerated this increase. The air particles sourced from the areas within the key region of the SWV and areas northeast of the key region were the second dominant factor for the vortex formation. Overall, for the air particles that formed the SWV, their most rapid changes of vorticity and divergence appeared in the period 24 h before SWV formation, implying that this was the critical period for the SWV generation.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Keyi Chen ◽  
Jiao Fan ◽  
Zhipeng Xian

The dynamic emissivity retrieved from window channels of the microwave humidity sounder II (MWHS-2) onboard the China Meteorological Administration’s FengYun (FY)-3C polar orbiting satellite can provide more realistic emissivity over lands and potentially improve the numerical weather prediction (NWP) forecasts. However, whether the assimilation with the dynamic emissivity works for the precipitation forecasts over the complex geography is less investigated. In this paper, a typical precipitating case generated by the Southwest Vortex is selected and the Weather Research and Forecasting data assimilation (WRFDA) system is applied to examine the impacts of assimilating MWHS-2/FY-3C with the uses of the emissivity atlas and the dynamic emissivity on the forecasts. The results indicate that the use of the dynamic emissivity retrieved from the 89 GHz channel of MWHS-2/FY-3C apparently increases the used data number for assimilation and does improve the initial fields and the 24-hour forecasts (from 0000 UTC 24 June 2016 to 0000 UTC 25 June 2016) of precipitation distribution and intensity except for the rainfall over 100 mm. But these positive impacts are not evidently better than those with the emissivity atlas. In general, these results still suggest that the future use of the dynamic emissivity in the assimilation over the complex terrain is promising.


Author(s):  
ZHAI Dan-hua ◽  
KONG Fan-you ◽  
DAI Ze-jun ◽  
GAO Song ◽  
DENG Cheng-zhi ◽  
...  
Keyword(s):  

2019 ◽  
Vol 76 (12) ◽  
pp. 3803-3830 ◽  
Author(s):  
Shen-Ming Fu ◽  
Zi Mai ◽  
Jian-Hua Sun ◽  
Wan-Li Li ◽  
Yang Ding ◽  
...  

Abstract In summer, convective activity over the Tibetan Plateau (TP) is vigorous, with some of it moving eastward and vacating the plateau [defined as the eastward-moving type (EMT)]. Although the EMT only accounts for a small proportion, it is closely related to heavy precipitation east of the TP. This study investigates EMT impacts based on a series of composite semi-idealized simulations and piecewise potential vorticity (PV) inversion. The main results are as follows. (i) An EMT begins to affect downstream precipitation before it vacates the TP. A weaker EMT tends to cause the main downstream rainband to reduce in intensity and move southward. (ii) The EMT contributes to the formation of an eastward-moving plateau vortex (PLV) by enhancing convergence-induced stretching. Over the TP, the PLV mainly enhances/maintains the EMT, whereas during the vacating stage, the PLV dissipates (since convergence decreases rapidly when sensible heating from the TP reduces), which substantially reduces the intensity of the EMT. (iii) After PLV dissipation, a southwest vortex (SWV) forms around the Sichuan basin mainly due to convergence-induced stretching, convection-related tilting, and background transport. Piecewise PV inversion indicates that an EMT can directly contribute to SWV formation via lowering geopotential height and enhancing cyclonic wind perturbations around the Sichuan basin (even before its vacating stage), while neither of them governs the SWV formation. Sensitivity runs show that an EMT is not necessary for SWV formation, but can modify the SWV formation time and location, as well as its displacement, which significantly affects downstream precipitation.


2019 ◽  
Vol 132 (4) ◽  
pp. 571-581
Author(s):  
Ping Lu ◽  
Weipeng Zheng ◽  
Yueqing Li
Keyword(s):  

2019 ◽  
Vol 147 (11) ◽  
pp. 4199-4220 ◽  
Author(s):  
Rudi Xia ◽  
Da-Lin Zhang

Abstract This study examines the synoptic- and mesoscale processes leading to the generation of three extreme rainfall episodes with hourly rates of greater than 100 mm h−1 over the southern, middle, and northern portions of the eastern foothills of Mt. Taihang in North China on 19–20 July 2016. The extreme rainfall episodes took place over the 200–600-m elevation zones in the southern and northern portions but also over the lower elevations in the middle portion of the target region, sequentially during late morning, early evening, and midnight hours. Echo training accounted for the development of a linear convective system in the southern region after the warm and moist air carried by a southeasterly low-level jet (LLJ) was lifted to condensation as moving across Mt. Yuntai. In contrast, two isolated circular-shaped convective clusters, with more robust convective cores in its leading segment, developed in the northern region through steep topographical lifting of moist northeasterly airflow, albeit conditionally less unstable. Extreme rainfall in the middle region developed from the convergence of a moist easterly LLJ with a northerly colder airflow associated with an extratropical cyclogenesis. Results reveal that the LLJs and associated moisture transport, the intensifying cyclone interacting with a southwest vortex and its subsequent northeastward movement, and the slope and orientation of local topography with respect to and the stability of the approaching airflows played different roles in determining the timing and location, the extreme rainfall rates, and convective organizations along the eastern foothills of Mt. Taihang.


2019 ◽  
Vol 20 (5) ◽  
pp. e894
Author(s):  
Yuan‐Chun Zhang ◽  
Shen‐Ming Fu ◽  
Jian‐Hua Sun ◽  
Rui Fu ◽  
Shuang‐Long Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document