The Assimilation of Microwave Humidity Sounder Observations in All‐sky Conditions

Author(s):  
Brett Candy ◽  
Stefano Migliorini
2021 ◽  
Vol 13 (15) ◽  
pp. 2873
Author(s):  
Dongmei Xu ◽  
Aiqing Shu ◽  
Hong Li ◽  
Feifei Shen ◽  
Qiang Li ◽  
...  

A new advanced microwave humidity sounder FY-3D MWHS2 radiance has been assimilated under the clear-sky conditions by implementing its data assimilation interface. The case of the tropical storm Ampil in 2018 is selected to address the effectiveness of the new-built module in the initialization and forecast of typhoons. Apart from the experiment assimilating both the Global Telecommunications System (GTS) data and the FY-3D MWHS2 radiance data, an experiment with only GTS data is also conducted for comparison. The results show that the bias correction of this humidity sounder is effective, and the analysis field after assimilating its radiance data matches well with the observation. The increment of specific humidity below the middle layers is evident after the assimilation of the radiance data. Besides, the geopotential height increment and the specific humidity increment at 500 hPa and 850 hPa, respectively, are favorable, resulting in more accurate rain belt distribution and a higher fraction skill score (FSS). In the deterministic forecast, the track error of the FY-3D MWHS2 experiment is consistently less than 90 km.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2021 ◽  
Vol 12 (3) ◽  
pp. 46-47
Author(s):  
Nikita Saxena

Space-borne satellite radiometers measure Sea Surface Temperature (SST), which is pivotal to studies of air-sea interactions and ocean features. Under clear sky conditions, high resolution measurements are obtainable. But under cloudy conditions, data analysis is constrained to the available low resolution measurements. We assess the efficiency of Deep Learning (DL) architectures, particularly Convolutional Neural Networks (CNN) to downscale oceanographic data from low spatial resolution (SR) to high SR. With a focus on SST Fields of Bay of Bengal, this study proves that Very Deep Super Resolution CNN can successfully reconstruct SST observations from 15 km SR to 5km SR, and 5km SR to 1km SR. This outcome calls attention to the significance of DL models explicitly trained for the reconstruction of high SR SST fields by using low SR data. Inference on DL models can act as a substitute to the existing computationally expensive downscaling technique: Dynamical Downsampling. The complete code is available on this Github Repository.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1965
Author(s):  
Edoardo De Din ◽  
Fabian Bigalke ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

The development of strategies for distribution network management is an essential element for increasing network performance and reducing the upgrade of physical assets. This paper analyzes a multi-timescale framework to control the voltage of distribution grids characterized by a high penetration of renewables. The multi-timescale solution is based on three levels that coordinate Distributed Generation (DG) and Energy Storage Systems (ESSs), but differs in terms of the timescales and objectives of the control levels. Realistic load and photovoltaic generation profiles were created for cloudy and clean sky conditions to evaluate the performance features of the multi-timescale framework. The proposed solution was also compared with different frameworks featuring two of the three levels, to highlight the contribution of the combination of the three levels in achieving the best performance.


2015 ◽  
Vol 92 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Manuel Antón ◽  
Alberto Cazorla ◽  
David Mateos ◽  
Maria J. Costa ◽  
Francisco J. Olmo ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. K. Gangwar ◽  
B. S. Gohil ◽  
A. K. Mathur

The present paper deals with the retrieval of the atmospheric layer averaged relative humidity profiles using data from the Microwave Humidity Sounder (MHS) onboard the MetOp satellite. The retrieval has been innovatively performed by firstly retrieving humidity for pairs of thick overlapping layers (TOLs) used subsequently to derive humidity for associated thin isolated layer (TIL). A water vapour dependent (WVD) algorithm has been developed and applied to infer the humidity of TOLs. Thus, the retrieved profiles have been finally compared with standard algorithm (NORM). These algorithms have been developed based on radiative transfer simulations and study of sensitivities of MHS channels on humidity of various types of layers (TOL, TIL). The algorithm has been tested with MHS data and validated using concurrent radiosonde as well as NCEP reanalysis data indicating profile errors of ~15% and ~19%, respectively.


Sign in / Sign up

Export Citation Format

Share Document