dune migration
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 8 (2) ◽  
pp. 99-114
Author(s):  
Lamyaa Gamal EL-Deen Taha ◽  
Manar A. Basheer ◽  
Amany Morsi Mohamed

Nowadays, desertification is one of the most serious environment socioeconomic issues and sand dune advances are a major threat that causes desertification. Wadi El-Rayan is one of the areas facing severe dune migration. Therefore, it's important to monitor desertification and study sand dune migration in this area. Image differencing for the years 2000 (Landsat ETM+) and 2019 (OLI images) and Bi-temporal layer stacking was performed. It was found that image differencing is a superior method to get changes of the study area compared to the visual method (Bi-temporal layer stacking). This research develops a quantitative technique for desertification assessment by developing indicators using Landsat images. Spatial distribution of the movement of sand dunes using some spectral indices (NDVI, BSI, LDI, and LST) was studied and a Python script was developed to calculate these indices. The results show that NDVI and BSI indices are the best indices in the identification and detection of vegetation. It was found that mobile sand dunes on the southern side of the lower Wadi El-Rayan Lake caused filling up of large part of the lower lake. The indices results show that sand movement decreased the size of the lower Wadi El-Rayan Lake and there are reclamation activities in the west of the lower lake. The results show that a good result could be achieved from the developed codes compared to ready-made software (ENVI 5).


2021 ◽  
Vol 13 (16) ◽  
pp. 3084
Author(s):  
Pinliang Dong ◽  
Jisheng Xia ◽  
Ruofei Zhong ◽  
Zhifang Zhao ◽  
Shucheng Tan

While remote sensing methods have long been used for coastal and desert sand dune studies, few methods have been developed for the automated measurement of dune migration in large dune fields. To overcome a major limitation of an existing method named “pairs of source and target points (PSTP)”, this paper proposes a toe line tracking (TLT) method for the automated measurement of dune migration rate and direction using multi-temporal digital elevation models (DEM) derived from light detection and ranging (LiDAR) data. Based on a few simple parameters, the TLT method automatically extracts the base level of a dune field and toe lines of individual dunes. The toe line polygons derived from two DEMs are processed using logical operators and other spatial analysis methods implemented in the Python programming language in a geographic information system. By generating thousands of random sampling points along source toe lines, dune migration distances and directions are calculated and saved with the sampling point feature class. The application of the TLT method was demonstrated using multi-temporal LiDAR-derived DEMs for a 9 km by 2.4 km area in the White Sands Dune Field in New Mexico (USA). Dune migration distances and directions for three periods (24 January 2009–26 September 2009, 26 September 2009–6 June 2010, and 24 January 2009–6 January 2010) were calculated. Sensitivity analyses were carried out using different window sizes and toe heights. The results suggest that both PSTP and TLT produce similar sand dune migration rates and directions, but TLT is a more generic method that works for dunes with or without slipfaces that reach the angle of repose.


2021 ◽  
Author(s):  
Fabien Ravet ◽  
Simon Maguire ◽  
Rodolfo Gil ◽  
Christian Silva ◽  
Etienne Rochat

Author(s):  
Fabien Ravet ◽  
Christian Silva ◽  
Rodolfo Gil ◽  
Etienne Rochat ◽  
Simon Maguire

Abstract Pipelines often cross challenging terrains where natural hazards are the main risk for their integrity. Environmental conditions can also worsen over the infrastructure lifetime. To reduce the risk of disasters, integrity programs are developed and require tools for early detection of threats that can lead to a failure with dramatic social, environmental and economic consequences. Fiber optic based Geotechnical Monitoring System (GMS) have been used and implemented as an efficient prevention tools of these programs. As a good example, GMS is successfully in operation to detect landslides using Distributed Strain Sensing along the Sierra section of the Peru LNG pipeline since 2010. The continuous operation of the GMS also revealed that infiltration, erosion and sand dune migration can be detected using Distributed Temperature Sensing (DTS). First, hydraulic erosion was evidenced in the Sierra region. More recently, events whose origin is eolian erosion and sand dune migration have been identified. A thermal analysis was then conducted to analyze the measured thermal signatures of the detected event. It revealed that the DoC (Depth-of-Cover) can be computed from the temporal response of the fiber optic cable. The time lag between ambient temperature and temperature of the cable directly relates to its burial depth. The obtained data are compared with site inspection observation which confirm the validity of the DTS approach. The method, combining DTS measurements on existing communication cable with thermal analysis, offers the ability to monitor erosion related geohazards in both Sierra and desert sections of the pipeline. The results of the presented work illustrate the potential value of fiber optic sensing to mitigate geohazard risks. It not only enhances the efficiency of the integrity program detecting and localizing threats, it also improves and rationalizes the maintenance activities as focused surveys can be conducted.


Author(s):  
Renske C. Terwisscha van Scheltinga ◽  
Giovanni Coco ◽  
Heide Friedrich

2021 ◽  
Vol 126 (3) ◽  
Author(s):  
S. J. Boazman ◽  
J. M. Davis ◽  
P. M. Grindrod ◽  
M. R. Balme ◽  
P. Vermeesch ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Lori K. Fenton ◽  
Simone Silvestro ◽  
Gary Kocurek

In Scandia Cavi on Mars, barchans migrating over a field of transverse aeolian ridges (TARs) leave behind distinctive trails (“wakes”) comprising both TARs undergoing exhumation and coarse-grained ripples being shed from the barchans. With distance upwind from the barchans, the combined pattern of these bedforms coarsens and defect density decreases, thus appearing to mature with exposure time. We present results of morphological analyses of the wake bedform crestlines using HiRISE images, seeking to determine how the wake pattern reflects TAR growth and pattern development. TARs interact with each other, exhibiting defect repulsions and possible lobe extensions, indicating that these bedforms have migrated in the past, despite the lack of identifiable change in overlapping images spanning 9.5 years. Mapping one wake in detail, we found that the TAR pattern is not affected by superposing ripples. However, the ripples undergo many interactions, first with one another, and later (with distance upwind) with the underlying TARs. Near the dune, many ripples laterally link, growing in length, and they preferentially form along TAR crests, resulting in small bedform repulsions and longer superposing ripples. Most of these ripples will be consumed by the TARs, an as-yet unreported growth dynamic for TARs that is consistent with the work of others, who have found a continuum between TARs and the meter-scale ripples that form on dunes. Constructing a DTM, orthorectifying HiRISE images, and measuring dune migration rates places the timescale of ripple absorption by TARs in a wake at several thousand years, with the first ∼1,000 years dominated by lateral linking of ripples. Assuming that TAR growth is accomplished entirely through dune burial and subsequent ripple consumption, we estimate a lower limit age of the TARs, and by extension, the dune field, to be ∼270 kyr.


2020 ◽  
Vol 143 ◽  
pp. 104569 ◽  
Author(s):  
Carlos H. Grohmann ◽  
Guilherme P.B. Garcia ◽  
Alynne Almeida Affonso ◽  
Rafael Walter Albuquerque

Author(s):  
Fabien Ravet ◽  
Christian Silva ◽  
Rodolfo Gil ◽  
Simon Maguire ◽  
Etienne Rochat

Abstract Pipelines often cross challenging terrains where natural hazards are the main risk for their integrity. Environmental conditions can also worsen over the infrastructure lifetime. To reduce the risk of disasters, integrity programs are developed implementing tools for early detection of threats that can lead to a failure with dramatic social, environmental and economic consequences. Fiber optic (FO) monitoring solutions have been widely used and implemented as one of the most efficient prevention tools of these programs. These solutions include geotechnical monitoring, third party intrusion detection and eventually small or pinhole like leak detection. FO based geotechnical monitoring has been successfully operated along the Sierra section of the Peru LNG pipeline since 2010, detecting minor landslides and erosion events. It has also been implemented along other hydrocarbon transport systems to allow the early detection of such events. However, these natural hazards are not the only ones threatening the pipeline. In fact, the coastal section experiences other phenomenon such as sand dune migration and eolian erosion that put the pipeline at risk. Recently, the FO monitoring was extended to the coastal region using the existing communication fiber optic cable to sense temperature changes. Very localized events are thermally detected, their spatial and temporal signature analyzed. The comparison of this data with thermal models identified sections that are close to be exposed or whose soil cover is less than 50cm over a spatial extension that does not exceed a couple of meters. Depth of cover of 10 to 30cm is estimated from such analysis. These results are confirmed by past and ongoing site inspections. Such positive results again illustrate the potential value of fiber optic sensing to mitigate geohazard risks. It not only enhances the efficiency of the integrity program detecting and localizing threats, it also improves and rationalizes the maintenance activities as focused surveys can be conducted.


Sign in / Sign up

Export Citation Format

Share Document