klf1 gene
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 2)

Transfusion ◽  
2021 ◽  
Vol 61 (10) ◽  
Author(s):  
Aline Floch ◽  
Sunitha Vege ◽  
Anna Burgos ◽  
Sharon Kuchma ◽  
Mollie Bell ◽  
...  

2021 ◽  
Author(s):  
Jesse Eernstman ◽  
Barbera Veldhuisen ◽  
Peter Ligthart ◽  
Marieke von Lindern ◽  
Ellen van der Schoot ◽  
...  

Abstract Beta-hemoglobinopathies become prominent after birth due to a switch from γ-globin to the mutated β-globin. Haploinsufficiency for the erythroid specific indispensable transcription factor Krueppel-like factor 1 (KLF1) is associated with high persistence of fetal hemoglobin (HPFH). The In(Lu) phenotype, characterized by low to undetectable Lutheran blood group expression is caused by mutations within KLF1 gene. These KLF1 variants often lead to KLF1 haploinsufficiency. We screened a donor cohort of 55 Lutheran weak or negative donors for KLF1 variants. To discriminate between weak and negative Lutheran expression, a flow cytometry (FCM) assay was developed to detect Lu polymorphisms. The Lu(a-b-) (negative) donor group, showing a significant decreased CD44 (Indian blood group) expression, also showed increased HbF and HbA2 levels, with outliers expressing >5% HbF. KLF1 exons and promoter sequencing revealed variants in 80% of the Lutheran negative donors. Thirteen different variants plus one high frequency SNP (c.304T>C) were identified of which 6 were novel. In primary erythroblasts, knockdown of endogenous KLF1 resulted in decreased CD44, Lu and increased HbF expression, while KLF1 over-expressing cells were comparable to wild type (WT). In line with the pleiotropic effects of KLF1 during erythropoiesis, distinct KLF1 mutants expressed in erythroblasts display different abilities to rescue CD44 and Lu expression and/or to affect fetal (HbF) or adult (HbA) hemoglobin expression.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Kevin R. Gillinder ◽  
Casie Leigh Reed ◽  
Shezlie Malelang ◽  
Helen Lorraine Mitchell ◽  
Emma Hoskin ◽  
...  

Sickle cell disease (SCD) affects millions of people worldwide and represents the most common monogenic disease of mankind (1). It is due to a homozygous T to A transversion in the β-globin gene that results in an amino acid variant - G6V - and production of HbS, which polymerises in red blood cells (RBCs) under hypoxic conditions. This generates irreversibly sickled cells that fail to traverse the microcirculation, resulting in micro-infarcts, hypoxia and pain, or 'sickle cell crises'. During gestation RBCs utilise different sets of globin genes to produce embryonic and fetal hemoglobins (HbF), so it is not until after birth when adult hemoglobin (HbA) is first produced that the first signs of SCD become apparent. This process termed 'hemoglobin switching' has been the focus of research efforts for decades because it offers an opportunity to reactivate HbF in adult cells of patients with hemoglobinopathies. A number of transcription factors, including Krüppel-like factor 1 (KLF1), play critical roles in hemoglobin switching. KLF1 is an essential erythroid transcription factor that co-ordinates the expression of more than a thousand genes critical to the formation of adult RBCs. KLF1 directly binds the β-globin gene promoter to up regulate its expression, whilst regulating the expression of additional factors like BCL11A and LRF that directly repress γ-globin expression (HbF). Heterozygosity for loss of function mutations in KLF1 leads to a significant increase in HbF that is beneficial to patients with β-thalassemia. We propose this can be recreated by advanced gene editing techniques to provide an effective therapy for SCD. We have employed CRISPR-based gene editing to knockout the expression of KLF1 in human cells. We designed two separate sgRNAs with corresponding HDR templates to target the second exon of KLF1 and ablate its function. We optimised transfection protocols and tested the on-target specificity of our sgRNAs achieving >90% efficacy in all cell types assayed. Using HUDEP-2 cells (2), a conditionally immortalised erythroid cell line which harbors three copies of KLF1 (3), we have demonstrated that these cells require at least one copy (>1/3) for survival; heterozygous cells (+/-/- or +/+/-) proliferate at a reduced rate, but are able to differentiate normally. Using RNA-seq, we identified some genes, including ICAM-4 and BCAM, which are down-regulated accordingly in a KLF1 gene dosage-dependent manner. ICAM-4 and BCAM are cellular adhesion molecules implicated in triggering vaso-occlusive episodes (4; 5), so it is anticipated their reduced expression may provide additional benefit in treating SCD. Gamma-globin is upregulated 10-fold, BCL11A down-regulated 3-fold, and HbF+ RBCs generated at ~20% of total RBCs in KLF1 +/-/- HUDEP-2 cell lines. We also engineered the ablation of KLF1 in CD34+ cells harvested from the peripheral blood of SCD patients undergoing exchange transfusions. Following transfection of the two guides, we performed directed differentiation using an erythroid differentiation medium and analysed the levels of HbF. We observed HbF at levels of between 40-60% of total Hb by HPLC, and HbF+ cells of ~50% by FACS. There was no measurable block in erythroid differentiation by FACS. We documented the types of gene editing using a high throughout NGS assay (6). We compared efficiencies of CRISPR repair of the HbS mutation with CRIPSR damage of the KLF1 gene. Lastly, we transplanted gene-edited CD34 cells into NSGW41 mice (where human erythropoiesis is established) to determine the efficiency and safety of editing long term HSCs from SCD patients. We will report on the results of these xenotransplantation assays. Taken together these results reveal the potential utility in targeting KLF1 to cure SCD. References: Wastnedge, E. et al..J Glob Health 8, 021103 (2018). Kurita, R. et al.PLoS One 8, e59890 (2013). Vinjamur, D. S. & Bauer, D. E. Methods Mol Biol 1698, 275-284 (2018). Bartolucci, P. et al..Blood 116, 2152-9 (2010). Zhang, J., et al. PLoS One 14, e0216467 (2019). Bell, C. C., et al. BMC Genomics 15, 1002 (2014). Perkins, A. et al..Blood 127, 1856-62 (2016). Disclosures Kaplan: Celgene: Honoraria; Novartis: Honoraria. Perkins:Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Author(s):  
Keyword(s):  

Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1771-1776 ◽  
Author(s):  
Priya Hariharan ◽  
Roshan Colah ◽  
Kanjaksha Ghosh ◽  
Anita Nadkarni
Keyword(s):  

2019 ◽  
Author(s):  
Xiaoyong Chen ◽  
Felix Lohmann ◽  
James J Bieker

AbstractEKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. It’s own regulation is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the Ddx5/p68 protein as a potential activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site (EHS1) upstream enhancer element. We postulate that its range of interactions with other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1.


2019 ◽  
Vol 11 (1) ◽  
pp. e2019038 ◽  
Author(s):  
Paramee Phanrahan ◽  
Supawadee Yamsri ◽  
Nattiya Teawtrakul ◽  
Goonnapa Fucharoen ◽  
Kanokwan Sanchaisuriya ◽  
...  

Background: The finding of many Thai Hb E-β0-thalassemia patients with non-transfusion dependent thalassemia (NTDT) phenotype without co-inheritance of α-thalassemia has prompted us to investigate the existence of other genetic modifying factors. Methods: Study was done on 146 adult Thai patients with NTDT Hb E-β0-thalassemia and a homozygous β-thalassemia patient without co-inheritance of α-thalassemia. Multiple single-nucleotide polymorphisms (SNPs) associated with γ-globin gene expression including the Gγ-XmnI of HBG2 gene, rs2297339, rs4895441, and rs9399137 of the HBS1L-MYB gene, rs4671393 in the BCL11A gene, and G176AfsX179, T334R, R238H and -154 (C-T) in the KLF1 gene were investigated using PCR-and related techniques. Results: Heterozygous and homozygous for Gg-XmnI of HBG2 gene were detected at 68.0% and 6.1%, respectively. Further DNA analysis identified the rs2297339 (C-T), rs4895441 (A-G), and rs9399137 (T-C) of HBS1L-MYB gene in 86.4%, 22.5% and 20.4%, respectively. The rs4671393 (G-A) of the BCL11A gene was found at 31.3%. For the KLF1 gene, the T334R and G176AfsX179 (+/-) were detected at 8.2% and 1.4%, respectively. Conclusion: It was found that these SNPs when analyzed in combination could explain the mild phenotypic expression of all cases. These results underline the importance of these informative SNPs on phenotypic expression of Hb E-β-thalassemia patients.


Sign in / Sign up

Export Citation Format

Share Document