scholarly journals Gene Editing of KLF1 to Cure Sickle Cell Disease

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Kevin R. Gillinder ◽  
Casie Leigh Reed ◽  
Shezlie Malelang ◽  
Helen Lorraine Mitchell ◽  
Emma Hoskin ◽  
...  

Sickle cell disease (SCD) affects millions of people worldwide and represents the most common monogenic disease of mankind (1). It is due to a homozygous T to A transversion in the β-globin gene that results in an amino acid variant - G6V - and production of HbS, which polymerises in red blood cells (RBCs) under hypoxic conditions. This generates irreversibly sickled cells that fail to traverse the microcirculation, resulting in micro-infarcts, hypoxia and pain, or 'sickle cell crises'. During gestation RBCs utilise different sets of globin genes to produce embryonic and fetal hemoglobins (HbF), so it is not until after birth when adult hemoglobin (HbA) is first produced that the first signs of SCD become apparent. This process termed 'hemoglobin switching' has been the focus of research efforts for decades because it offers an opportunity to reactivate HbF in adult cells of patients with hemoglobinopathies. A number of transcription factors, including Krüppel-like factor 1 (KLF1), play critical roles in hemoglobin switching. KLF1 is an essential erythroid transcription factor that co-ordinates the expression of more than a thousand genes critical to the formation of adult RBCs. KLF1 directly binds the β-globin gene promoter to up regulate its expression, whilst regulating the expression of additional factors like BCL11A and LRF that directly repress γ-globin expression (HbF). Heterozygosity for loss of function mutations in KLF1 leads to a significant increase in HbF that is beneficial to patients with β-thalassemia. We propose this can be recreated by advanced gene editing techniques to provide an effective therapy for SCD. We have employed CRISPR-based gene editing to knockout the expression of KLF1 in human cells. We designed two separate sgRNAs with corresponding HDR templates to target the second exon of KLF1 and ablate its function. We optimised transfection protocols and tested the on-target specificity of our sgRNAs achieving >90% efficacy in all cell types assayed. Using HUDEP-2 cells (2), a conditionally immortalised erythroid cell line which harbors three copies of KLF1 (3), we have demonstrated that these cells require at least one copy (>1/3) for survival; heterozygous cells (+/-/- or +/+/-) proliferate at a reduced rate, but are able to differentiate normally. Using RNA-seq, we identified some genes, including ICAM-4 and BCAM, which are down-regulated accordingly in a KLF1 gene dosage-dependent manner. ICAM-4 and BCAM are cellular adhesion molecules implicated in triggering vaso-occlusive episodes (4; 5), so it is anticipated their reduced expression may provide additional benefit in treating SCD. Gamma-globin is upregulated 10-fold, BCL11A down-regulated 3-fold, and HbF+ RBCs generated at ~20% of total RBCs in KLF1 +/-/- HUDEP-2 cell lines. We also engineered the ablation of KLF1 in CD34+ cells harvested from the peripheral blood of SCD patients undergoing exchange transfusions. Following transfection of the two guides, we performed directed differentiation using an erythroid differentiation medium and analysed the levels of HbF. We observed HbF at levels of between 40-60% of total Hb by HPLC, and HbF+ cells of ~50% by FACS. There was no measurable block in erythroid differentiation by FACS. We documented the types of gene editing using a high throughout NGS assay (6). We compared efficiencies of CRISPR repair of the HbS mutation with CRIPSR damage of the KLF1 gene. Lastly, we transplanted gene-edited CD34 cells into NSGW41 mice (where human erythropoiesis is established) to determine the efficiency and safety of editing long term HSCs from SCD patients. We will report on the results of these xenotransplantation assays. Taken together these results reveal the potential utility in targeting KLF1 to cure SCD. References: Wastnedge, E. et al..J Glob Health 8, 021103 (2018). Kurita, R. et al.PLoS One 8, e59890 (2013). Vinjamur, D. S. & Bauer, D. E. Methods Mol Biol 1698, 275-284 (2018). Bartolucci, P. et al..Blood 116, 2152-9 (2010). Zhang, J., et al. PLoS One 14, e0216467 (2019). Bell, C. C., et al. BMC Genomics 15, 1002 (2014). Perkins, A. et al..Blood 127, 1856-62 (2016). Disclosures Kaplan: Celgene: Honoraria; Novartis: Honoraria. Perkins:Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3506-3506
Author(s):  
Jianqiong Zhu ◽  
Kyung Chin ◽  
Wulin Aerbajinai ◽  
Chutima Kumkhaek ◽  
Hongzhen Li ◽  
...  

Abstract Current gene therapy approaches for treatment of hemoglobinopathies involve viral transduction of hematopoietic stem cells with antisickling globin genes. Hemoglobin A2 (HA2, α2δ2), expressed at a low level due to the lack of Eklf binding motif in its promoter region, is fully functional and could be a valid anti-sickling agent in sickle cell disease, as well as a substitute of hemoglobin A in β-thalassemia. We had previously demonstrated that two Eklf-GATA1 fusion proteins could significantly activate δ-globin expression in CD34+ cells from healthy and sickle trait donor's blood. Here we report the effects of Eklf-GATA1 on hemoglobin expression and phenotypic correction using erythrocytes cultured from CD34+ cells with sickle cell disease. We found that enforced expression of Eklf-GATA1 fusion protein enhanced globin gene expression in the erythrocytesas compared with vector control. The long-form Eklf-GATA1 up-regulated β-globin gene expression 2.0-fold, δ-globin gene expression 4.3-fold, and γ-globin gene expression 2.6-fold. The medium-form EKLF-GATA1 up-regulated δ-globin gene expression 2.3-fold and γ-globin 1.3-fold, but had no significant effect on β-globin gene expression. HPLC revealed a percentage of HA2+HbF was increased from 8.1 % in vector-transduced cells to 19.7% in medium-form Eklf-GATA-transduced-cells (p<0.01) and 14.4% in long-form Eklf-GATA-transduced-cells (p<0.01). Upon deoxygenation, the percentage of sickling erythrocyte was lower to 79.8% in medium-form Eklf-GATA-transduced cells as compared with 89.8% in vector-transduced-cells (p<0.05). Flow cytometry analyses of CD71/GPA and thiazole orange staining indicated that erythroid cell differentiation and enucleation were not affected by Eklf-GATA1. Our results shown that long form Eklf-GATA1 fusion protein has major effects on d- and g-globin induction than β-globin; the medium form Eklf-GATA1 elevated δ- and γ-globin expression without an effect on β-globin expression. Our results indicate that these fusion constructs could be a valuable genetic therapeutic tool for hemoglobinopathies, and warrant further preclinical study and evaluation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3119-3119
Author(s):  
Fabrizia Urbinati ◽  
Zulema Romero Garcia ◽  
Sabine Geiger ◽  
Rafael Ruiz de Assin ◽  
Gabriela Kuftinec ◽  
...  

Abstract Abstract 3119 BACKGROUND: Sickle cell disease (SCD) affects approximately 80, 000 Americans, and causes significant neurologic, pulmonary, and renal injury, as well as severe acute and chronic pain that adversely impacts quality of life. Because SCD results from abnormalities in red blood cells, which in turn are produced from adult hematopoietic stem cells, hematopoietic stem cell transplant (HSCT) from a healthy (allogeneic) donor can benefit patients with SCD, by providing a source for life-long production of normal red blood cells. However, allogeneic HSCT is limited by the availability of well-matched donors and by immunological complications of graft rejection and graft-versus-host disease. Thus, despite major improvements in clinical care, SCD continues to cause significant morbidity and early mortality. HYPOTHESIS: We hypothesize that autologous stem cell gene therapy for SCD has the potential to treat this illness without the need for immune suppression of current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levassuer Blood 102 :4312–9, 2003). The present work seeks to provide pre-clinical evidence of efficacy for SCD gene therapy using human BM CD34+ cells modified with the bAS3 lentiviral (LV) vector. RESULTS: The βAS3 globin expression cassette was inserted into the pCCL LV vector backbone to confer tat-independence for packaging. The FB (FII/BEAD-A) composite enhancer-blocking insulator was inserted into the 3' LTR (Ramezani, Stem Cells 26 :32–766, 2008). Assessments were performed transducing human BM CD34+ cells from healthy or SCD donors with βAS3 LV vectors. Efficient (1–3 vector copies/cell) and stable gene transmission were determined by qPCR and Southern Blot. CFU assays demonstrated that βAS3 gene modified SCD CD34+ cells are fully capable of maintaining their hematopoietic potential. To demonstrate the effectiveness of the erythroid-specific bAS3 gene in the context of human HSPC (Hematopoietic Stem and Progenitor Cells), we optimized an in vitro model of erythroid differentiation of huBM CD34+ cells. We successfully obtained an expansion up to 700 fold with >80% fully mature enucleated RBC derived from CD34+ cells obtained from healthy or SCD BM donors. We then assessed the expression of the βAS3 globin gene by isoelectric focusing: an average of 18% HbAS3 over the total globin present (HbS, HbA2) per Vector Copy Number (VCN) was detected in RBC derived from SCD BM CD34+. A qRT-PCR assay able to discriminate HbAS3 vs. HbA RNA, was also established, confirming the quantitative expression results obtained by isoelectric focusing. Finally, we show morphologic correction of in vitro differentiated RBC obtained from SCD BM CD34+ cells after βAS3 LV transduction; upon induction of deoxygenation, cells derived from SCD patients showed the typical sickle shape whereas significantly reduced numbers were detected in βAS3 gene modified cells. Studies to investigate risks of insertional oncogenesis from gene modification of CD34+ cells by βAS3 LV vectors are ongoing as are in vivo studies to demonstrate the efficacy of βAS3 LV vector in the NSG mouse model. CONCLUSIONS: This work provides initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with βAS3 LV vector for gene therapy of sickle cell disease. This work was supported by the California Institute for Regenerative Medicine Disease Team Award (DR1-01452). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4706-4706 ◽  
Author(s):  
Dula Man ◽  
Brett Sansbury ◽  
Pawel Bialk ◽  
Kevin Bloh ◽  
E. Anders Kolb ◽  
...  

Abstract Introduction Sickle Cell Disease (SCD) results from a simple substitution of valine for glutamic acid at codon 6 in the β globin gene, resulting in an AàT transition in the third position. The mutation results in the production of hemoglobin HbS which differs from the normal HbAin that it tends to polymerize into long strands that deform the erythrocyte. While a variety of traditional treatment regimens or reagents, such as hydroxyurea and chronic transfusions have been used widely, these therapies are wrought with short and long term side effects that limit efficacy. There is great interest in the hypothesis that the repair of a single nucleotide is facilitated by the combined action of CRISPR/Cas 9 and single-stranded oligonucleotides (ssODNs) could prove a significant therapeutic advance for sickle cell disease. CRISPR/Cas 9 induces a site-specific double-stranded break while the single-stranded oligonucleotide provides a DNA template to improve the rate of accurate genetic correction. There is a great effort to understand off-site mutagenesis caused by editing of DNA regions remote to the target sequence. It is critical that investigators understand the frequency and types of DNA alterations induced by the gene editing reaction and affecting the region surrounding the targeted nucleotide site (herein termed on-site mutagenesis). Methods We targeted beta globin genes with a CRISPR/Cas9 system designed to cleave 2 bases to the 5'side of the targeted (A) nucleotide (the PAM site is located 2 bases to the 3' side on the complimentary strand) coupled to the electroporation of a single-stranded oligonucleotide (72-mer) designed to convert the wild-type (A) to the mutant (T) nucleotide. To evaluate the rate of on-site mutagenesis among individual alleles, we clonally expanded populations of edited K562 cells. We hypothesize that the evaluation of individual clones will permit a clear identification of intended and un-intended on-site DNA alteration. Allelic heterogeneity is analyzed using Tracking of Indels by DEcompositon (TIDE) methodology combined with Sanger sequencing. Results We isolated 26 clonal lines for continued expansion after evidence of CRISPR/Cas 9 plasmid uptake and activity. Sanger sequencing with TIDE analysis revealed that the DNA sequence surrounding the targeted base is altered significantly as a result of the CRISPR/Cas9 gene editing process. Twenty three percent of the clones contain at least one corrected allele but one hundred percent of the clones exhibited mutagenicity of the DNA sequence surrounding the targeted base. All clones analyzed displayed varying degrees of sequence alteration (Figure 1). Interestingly, one clone contained a DNA insertion homologous to a region of the delta globin gene, suggesting that gene editing of the beta globin gene may have been repaired, in part, by delta globin DNA. The sequence of the delta globin locus was not changed. Conclusions Taken together, our data suggest that combinatorial approaches to beta globin gene editing using CRISPR/Cas 9 and single-stranded oligonucleotides induce significant onsite mutagenesis and potential genetic swapping between related members of the same gene family. These observations provide insight into the type of molecular activity that accompanies combinatorial gene editing, particularly surrounding the target site. This work is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM109021 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3973-3973
Author(s):  
Megane Brusson ◽  
Anne Chalumeau ◽  
Pierre Martinucci ◽  
Valentina Poletti ◽  
Fulvio Mavilio ◽  
...  

Abstract Sickle cell disease (SCD) is due to a mutation in the β-globin (HBB) gene causing the production of the sickle β S-globin chain. The sickle Hb (HbS, a 2β S2) polymerizes, leading to the formation of sickle-shaped red blood cells that cause vaso-occlusions and organ damage. Transplantation of autologous hematopoietic stem/progenitor cells (HSPCs) transduced with lentiviral vectors (LV) expressing an anti-sickling β-globin transgene (βAS LV) is a promising curative treatment; however, it is partially effective in SCD patients, who still present elevated HbS levels. Here, we aim to improve LVs to boost therapeutic β-like globin levels without increasing the mutagenic vector load in HSPCs. We developed 2 novel LVs expressing βAS together with an artificial microRNA (amiR) targeting either the fetal Hb (HbF) repressor BCL11A (βAS/amiRBCL11A) or the β S-globin (βAS/amiRHBB). By downregulating BCL11A, amiRBCL11A re-activates the expression of the endogenous anti-sickling fetal γ-globin, which, together with βAS, should improve the clinical course of SCD; β S-globin downregulation should favor βAS incorporation in Hb tetramers, increase therapeutic Hb levels and ameliorate the SCD phenotype. First, we developed βAS/amiRBCL11A LV by inserting the amiR in multiple position of the βAS intron 2 under the control of HBB promoter/enhancers to limit BCL11A downregulation to the erythroid lineage and reduce potential amiR-related cellular toxicity and off-target effects. We showed that amiR insertion site did not affect LV titer nor βAS expression in a human erythroid cell line (HUDEP2). BCL11A downregulation in HUDEP2 led to γ-globin gene de-repression and a high proportion of HbF + cells (RTqPCR, HPLC, flow cytometry). Importantly, the total amount of therapeutic β-like globins was substantially higher in βAS/amiRBCL11A LV- than in βAS LV-transduced cells, with no impairment in cell viability or erythroid differentiation. In parallel, we designed 17 amiRs targeting HBB and generated the corresponding βAS/amiRHBB LVs. We tested these LVs in HUDEP2 and selected 2 amiRs efficiently downregulating β-globin at mRNA and protein levels (RT-qPCR and Western Blot). Of note, we modified the βAS transgene by inserting silent mutations that prevent its recognition by the amiR (βASm). Finally, we tested βAS/amiRBCL11A and βAS/amiRHBB LVs in HSPCs from SCD patients. HSPC-derived erythroid cells transduced with βAS/amiRBCL11A LV showed increased HbF levels, although HbS levels remained high. To further reduce β S-globin levels, we targeted the β S-globin mRNA using the βAS/amiRHBB LV. Efficient HSPC transduction by βASm/amiRHBB LV led to a substantial decrease of β S-globin transcripts in HSPC-derived erythroid cells compared to the βAS LV-transduced cells (RTqPCR) at a VCN/cell of 2. Notably, the amiR specifically down-regulated β S-globin, without affecting βAS expression. In βASm/amiRHBB- vs βAS LV-transduced cells, HPLC analysis showed that β S-globin downregulation led to a significant decrease of HbS, which represented 58% and 71% of the total Hb, respectively). This was associated with a significant increase of the therapeutic Hb in βASm/amiRHBB LV- vs βAS LV-transduced erythroid cells (38% and 27% of the total Hb, respectively). Importantly, we observed a substantial reduction of the proportion of HbS-positive cells in βASm/amiRHBB- vs βAS LV-transduced samples (from 96% to 70%; Figure 1A). The increased incorporation of βAS in Hb tetramers and the decrease in β S-globin led to a better correction of the sickling phenotype in mature RBCs derived from HSPCs transduced with βASm/amiRHBB LV- compared to βAS LV (55% and 84% of sickling cells, respectively; Figure 1B). A clonal assay of hematopoietic progenitors showed no impairment in HSPC viability and differentiation towards the erythroid and myeloid lineages upon transduction with bifunctional LVs. βASm/amiRHBB LV showed a standard lentiviral integration profile. Finally, we performed RNAseq to further evaluate the safety of our therapeutic strategy. In conclusion, we created a LV able to concomitantly silence the β S-globin and express βAS, achieving clinically relevant levels of therapeutic Hb and efficient correction of the sickling phenotype. Therefore, the combination of gene addition and gene silencing strategies can improve the efficacy of current therapeutic approaches, representing a novel treatment for SCD. Figure 1 Figure 1. Disclosures Cavazzana: Smart Immune: Other: co-founder.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1280-1280
Author(s):  
Selda Samakoglu ◽  
Yelena Usachenko ◽  
Tulin Budak-Alpdogan ◽  
Santina Acuto ◽  
Rosalba DiMarzo ◽  
...  

Abstract RNA interference (RNAi) is a promising therapeutic strategy, but its application to stem cell-based gene therapy for the treatment of congenital or acquired disorders will require highly specific gene silencing. To ensure co-expression of a therapeutic transgene and a small interfering RNA (siRNA), we hypothesized that a promoter-less small hairpin RNA (shRNA) embedded within an intron could yield siRNA in tissue-specific fashion and thus achieve regulated RNAi. We demonstrate here that γ-globin expression and erythroid-specific siRNA generation can be achieved in mammalian cells, including human CD34+ cells. The shRNA was encoded under the transcriptional control of the human β-globin promoter, a prototypic tissue-specific Pol II promoter, and positioned at two different sites in the second intron or in the 5′-UTR of a recombinant human γ-globin gene. Three different genes were targeted in mouse erythroleukemia (MEL) cells, green fluorescent protein (EGFP), human sickle β-globin (β S) and endogenous mouse β-gobin. When cloned immediately upstream of the branch point, the siRNA was efficiently generated without altering γ-globin mRNA expression and processing, suggesting that hairpin positioning near the branch point is not detrimental to RNA splicing. When cloned near the 5′-end of the intron, the siRNA was structurally impaired, and the γ-globin mRNA levels greatly diminished. This strong effect of shRNA positioning is consistent with a quality control pathway of gene transcription, whereby introns harboring dsRNA stem loops are degraded if splicing is altered. The strong induction of interferon type I genes associated with the latter position but not the former correlated with the formation of small shRNA degradation products. Positioning of the shRNA in the 5′-UTR did not induce major interferon responses but severely compromised γ-globin expression. To further validate these findings in a clinically relevant model, we engineered an RNAi lentiviral vector in which the human sickle β-globin specific (β S) siRNA is embedded the second intron of a recombinant γ-globin gene. Following transduction of CD34+ cells from patients with sickle cell disease, γ-globin transgene expression was induced upon erythroid differentiation concomitant with a dramatic decrease of the β S transcripts. These findings fully support the principle of synergistic gene delivery and lariat-encoded RNAi in human CD34+ cells, demonstrating the feasibility of using lariat-embedded siRNA to potentiate globin gene transfer by reducing competition from endogenous β S globin chains. Importantly, a moderate decrease in β S expression may substantially improve SCD and abrogate the need for high level expression of the vector-encoded globin gene. This approach to regulate RNAi may find broad applicability in a wide range of disorders where the concomitant expression of a transgene and RNAi will enhance treatment safety and/or efficacy.


2019 ◽  
Vol 70 (1) ◽  
pp. 257-271 ◽  
Author(s):  
Stuart H. Orkin ◽  
Daniel E. Bauer

The genetic basis of sickle cell disease (SCD) was elucidated >60 years ago, yet current therapy does not rely on this knowledge. Recent advances raise prospects for improved, and perhaps curative, treatment. First, transcription factors, BCL11A and LRF/ZBTB7A, that mediate silencing of the β-like fetal (γ-) globin gene after birth have been identified and demonstrated to act at the γ-globin promoters, precisely at recognition sequences disrupted in rare individuals with hereditary persistence of fetal hemoglobin. Second, transformative advances in gene editing and progress in lentiviral gene therapy provide diverse opportunities for genetic strategies to cure SCD. Approaches include hematopoietic gene therapy by globin gene addition, gene editing to correct the SCD mutation, and genetic manipulations to enhance fetal hemoglobin production, a potent modifier of the clinical phenotype. Clinical trials may soon identify efficacious and safe genetic approaches to the ultimate goal of cure for SCD.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2192-2192
Author(s):  
So Hyun Park ◽  
Ciaran M Lee ◽  
Daniel P. Dever ◽  
Timothy H Davis ◽  
Joab Camarena ◽  
...  

Abstract Sickle cell disease (SCD) is an inherited blood disorder associated with a debilitating chronic illness. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution converts glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of red blood cells. Here we show that delivery of Streptococcus pyogenes (Sp) Cas9 protein and CRISPR guide RNA as a ribonucleoprotein complex (RNP) together with a short single-stranded DNA donor (ssODN) template into CD34+ hematopoietic stem and progenitor cells (HSPCs) from SCD patients' bone marrow (BM) was able to correct the sickling HBB mutation, with up to 33% homology directed repair (HDR) without selection. Further, CRISPR/Cas9 cutting of HBB in SCD HSPCs induced gene conversion between the HBB sequences in the vicinity of the target locus and the homologous region in δ-globin gene (HBD), with up to 4.4% additional gene correction mediated by the HBD conversion in cells with Cas9 cutting only. The erythrocytes derived from gene-edited cells showed a marked reduction of the HbS level, increased expression of normal adult hemoglobin (HbA), and a complete loss of cell sickling, demonstrating the potential in curing SCD. We performed extensive off-target analysis of gene-edited SCD HSPCs using the in-silico prediction tool COSMID and unbiased, genome-wide assay Guide-Seq, revealing a gross intrachromosomal rearrangement event between the on- and off-target Cas9 cutting sites. We used a droplet digital PCR assay to quantify deletion and inversion events from Day 2 to Day 12 after RNP delivery, and found that large chromosomal deletion decreased from 1.8% to 0.2%, while chromosomal inversion maintained at 3.3%. We demonstrated that the use of high-fidelity SpCas9 (HiFi Cas9 by IDT) significantly reduced off-target effects and completely eliminated the intrachromosome rearrangement events, while maintaining the same level of on-target gene editing, leading to high-efficiency gene correction with increased specificity. In order to determine if gene-corrected SCD HSPCs retain the ability to engraft, CD34+ cells from the BM of SCD patients were treated with Cas9/gRNA RNP and ssODN donor for HBB gene correction, cryopreserved at Day 2 post genome editing, then intravenously transplanted into NSG mice shortly after thawing. These mice were euthanized at Week 16 after transplantation, and the BM was harvested to determine the engraftment potential. An average of 7.5 ±5.4% of cells were double positive for HLA and hCD45 in mice injected with gene-edited CD34+ cells, compared to 16.8 ±9.3% with control CD34+ cells, indicating a good level of engraftment of gene-corrected SCD HSPCs. A higher fraction of human cells were positive for CD19 (66 ±28%), demonstrating lymphoid lineage bias. DNA was extracted from unsorted cells, CD19 or CD33 sorted cells for gene-editing analysis; the HBB editing rates were respectively 29.8% HDR, 2.4% HBD conversion, and 42.8% non-homologous end joining (NHEJ) pretransplantation, and editing rates at Week 16 posttransplantation were respectively 8.8 ±12% HDR, 1.8 ±1.7% HBD conversion, and 24.5 ±12% NHEJ. The highly variable editing rate and indel diversity in gene-edited cells at Week 16 in all four transplanted mice suggest clonal dominance of a limited number of HSPCs after transplantation. Taken together, our results demonstrate highly efficient gene and phenotype correction of the sickling mutation in BM HSPCs from SCD patients mediated by HDR and HBD conversion, and the ability of gene-edited SCD HSPCs to engraft in vivo. We also demonstrate the importance of genome-wide analysis for off-target analysis and the use of HiFi Cas9. Our results provide further evidence for the potential of moving genome editing-based SCD treatment into clinical practice. Acknowledgments: This work was supported by the Cancer Prevention and Research Institute of Texas grants RR140081 and RP170721 (to G. B.), and the National Heart, Lung and Blood Institute of NIH (1K08DK110448 to V.S.) Disclosures Porteus: CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2015 ◽  
Vol 43 (5) ◽  
pp. 346-351 ◽  
Author(s):  
Fabrizia Urbinati ◽  
Phillip W. Hargrove ◽  
Sabine Geiger ◽  
Zulema Romero ◽  
Jennifer Wherley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document