prime meridian
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 0)

Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 723-734
Author(s):  
Duncan Tamsett

A human listening to monophonic sound through headphones perceives the sound to emanate from a point inside the head at the auditory centre at effectively zero range. The extent to which this is predicted by synthetic-aperture calculation performed in response to head rotation is explored. The instantaneous angle between the auditory axis and the acoustic source, lambda, for the zero inter-aural time delay imposed by headphones is 90°. The lambda hyperbolic cone simplifies to the auditory median plane, which intersects a spherical surface centred on the auditory centre, along a prime meridian lambda circle. In a two-dimensional (2-D) synthetic-aperture computation, points of intersection of all lambda circles as the head rotates constitute solutions to the directions to acoustic sources. Geometrically, lambda circles cannot intersect at a point representing the auditory centre; nevertheless, 2-D synthetic aperture images for a pure turn of the head and for a pure lateral tilt yield solutions as pairs of points on opposite sides of the head. These can reasonably be interpreted to be perceived at the sums of the position vectors of the pairs of points on the acoustic image, i.e., at the auditory centre. But, a turn of the head on which a fixed lateral tilt of the auditory axis is concomitant (as in species of owl) yields a 2-D synthetic-aperture image without solution. However, extending a 2-D synthetic aperture calculation to a three-dimensional (3-D) calculation will generate a 3-D acoustic image of the field of audition that robustly yields the expected solution.


2021 ◽  
Author(s):  
Zerlina Hofmann ◽  
Wilken-Jon von Appen ◽  
Claudia Wekerle

<p>Atlantic Water, which is transported northward by the West Spitsbergen Current, partly recirculates (i.e. turns westward) in Fram Strait. This determines how much heat and salt reaches the Arctic Ocean, and how much joins the East Greenland Current on its southward path. We describe the Atlantic Water recirculation's location, seasonality, and mesoscale variability by analyzing the first observations from moored instruments at five latitudes in central Fram Strait, spanning a period from August 2016 to July 2018. We observe recirculation on the prime meridian at 78°50'N and 80°10'N, respectively south and north of the Molly Hole, and no recirculation further south at 78°10'N and further north at 80°50'N. At a fifth mooring location at 79°30'N, we observe some influence of the two recirculation branches. The southern recirculation is observed as a continuous westward flow that carries Atlantic Water throughout the year, though it may be subject to broadening and narrowing. It is affected by eddies in spring, likely due to the seasonality of mesoscale instability in the West Spitsbergen Current. The northern recirculation is observed solely as passing eddies on the prime meridian, which are strongest during late autumn and winter, and absent during summer. This seasonality is likely affected both by the conditions set by the West Spitsbergen Current and by the sea ice. Open ocean eddies originating from the West Spitsbergen Current interact with the sea ice edge when they subduct below the fresher, colder water. Additionally the stratification set up by sea ice presence may inhibit recirculation.</p>


Author(s):  
Yoshinori Teshima ◽  
Yohsuke Hosoya ◽  
Kazuma Sakai ◽  
Tsukasa Nakano ◽  
Akiko Tanaka ◽  
...  

AbstractTo understand geographical positions, globes adapted for tactile learning is needed for people with visual impairments. Therefore, we created three-dimensional (3D) tactile models of the earth for the visually impaired, utilizing the exact topography data obtained by planetary explorations. Additively manufactured 3D models of the earth can impart an exact shape of relief on their spherical surfaces. In this study, we made improvements to existing models to satisfy the requirements of tactile learning. These improvements were the addition of the equator, prime meridian, and two poles to a basis model. Hence, eight types of model were proposed. The equator and the prime meridian were expressed by the belt on four models (i.e., B1, B2, B3, and B4). The height of their belt was pro-vided in four stages. The equator and the prime meridian were expressed by the gutter on four models (i.e., C1, C2, C3, and C4). The width of their gutter was provided in four stages. The north pole was expressed by a cone, while the south pole was expressed by a cylinder. The two poles have a common shape in all of the eight models. Evaluation experiments revealed that the Earth models developed in this study were useful for tactile learning of the visually impaired.


2019 ◽  
Vol 51 (2) ◽  
pp. 182-183
Author(s):  
Mirela Altić
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document