optical micrographs
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S So ◽  
Y Takaku ◽  
I Ohta ◽  
F Tawara ◽  
T Hariyama

Abstract Study question Can the NanoSuit method to observe sperm cells in wet conditions help treat male infertility using a field emission scanning electron microscope (FE-SEM)? Summary answer Compared with the conventional fixation method, the NanoSuit method can easily prepare FE-SEM samples without causing contraction and denaturation of human sperm cells. What is known already Evaluation of sperm morphology by optical microscopy is important for identifying male infertility. FE-SEM observation is useful for a more detailed evaluation of sperm morphology; however, a lot of the morphological information of the cells is lost by chemical fixation, dehydration, and freeze-drying. The NanoSuit method enables FE-SEM observation of unfixed cells under a high vacuum environment by electron beam polymerization of extracellular substances called NanoSuit. It has been reported that a sample prepared by the NanoSuit method retains the morphological information of live cells better than a sample prepared by the conventional fixation method. Study design, size, duration This laboratory study was conducted with informed consent and IRB approval. Semen parameters were within the WHO normal reference range. Participants/materials, setting, methods The conventional fixation method sample was prepared by fixing (glutaraldehyde and osmium), dehydration (ethanol and t-butyl alcohol), and freeze-drying. The NanoSuit method sample was introduced into the FE-SEM directly without conducting the above treatments. For observation, a JSM–7100F (JEOL, Japan) was used at an acceleration voltage of 1.0 kV. The vacuum level of the observation chamber was 10–3 to 10–6 Pa. Main results and the role of chance Sperm head segmentation (acrosome, equatorial segment, and post acrosome), midpiece, and tail including endpiece could be clearly identified in the FE-SEM sample prepared by the NanoSuit method. Transmission electron microscopy revealed the existence of a thin polymerized extra layer, the NanoSuit, on the surface of the sperm. It is suggested that the presence of the NanoSuit layer enables FE-SEM observation of the unfixed sperm. The conventional fixation method causes a statistically significant contraction in the sperm head size compared to that calculated from optical micrographs (13.5 μm2 vs. 11.6 μm2, p < 0.001). Furthermore, wheat germ agglutinin (WGA), a lectin, which is known to have the ability to bind to the sperm surface, did not bind to the fixed FE-SEM samples. This means that the original cell surface properties are lost in the fixed sperm sample. On the other hand, the FE-SEM sample prepared by the NanoSuit method did not show a statistically significant contraction of the sperm head compared to that calculated from optical micrographs (13.2 μm2 vs 12.9 μm2, p = 0.416); it also revealed a detailed binding pattern of gold-labelled WGA to the sperm surface. These results indicate that the NanoSuit method can prepare FE-SEM samples without sperm contraction and denaturation. Limitations, reasons for caution Characteristic sperm morphology in patients with male infertility should be investigated in future studies. Wider implications of the findings: The NanoSuit method does not use chemical carcinogens and can prepare an FE-SEM sample in a shorter time than the conventional fixation method. The evaluation of ultrastructural morphology of unfixed sperms by this method may be useful for the identification of new morphological features and the evaluation of male infertility. Trial registration number Not applicable


2020 ◽  
Vol 124 (28) ◽  
pp. 15152-15161 ◽  
Author(s):  
Alexander D. Smith ◽  
Nicholas Abbott ◽  
Victor M. Zavala

Soft Matter ◽  
2020 ◽  
Vol 16 (48) ◽  
pp. 10900-10909
Author(s):  
Veronica Grebe ◽  
Mingzhu Liu ◽  
Marcus Weck

Current developments in colloidal science include the assembly of anisotropic colloids with broad geometric diversity.


Measurement ◽  
2019 ◽  
Vol 140 ◽  
pp. 142-150 ◽  
Author(s):  
Siddhartha Banerjee ◽  
Pravash Chandra Chakraborti ◽  
Sanjoy Kumar Saha

Soft Matter ◽  
2019 ◽  
Vol 15 (18) ◽  
pp. 3659-3670 ◽  
Author(s):  
Guilhem Poy ◽  
Slobodan Žumer

We present a novel ray-tracing method in birefringent media able to accurately simulate bright-field and polarised optical micrographs.


2018 ◽  
Vol 924 ◽  
pp. 120-123 ◽  
Author(s):  
Bart van Zeghbroeck ◽  
Hannah Robinson ◽  
Ryan R. Brow

Hot filament CVD (HFCVD) growth of undoped 4H-SiC epitaxial layers on 100 mm n-type 4o-off 4H-SiC substrates is presented as an alternate growth method for the first time. High quality crystalline material with a low density of polytype inclusions has been demonstrated and characterized with optical micrographs, SEM imaging, micro-Raman measurements, and high resolution XRD. Typical growth rates are ~3 μm/hour. Double rocking omega scans revealed diffraction peaks with a FWHM of 23 arcsec.


2018 ◽  
Vol 188 ◽  
pp. 04010
Author(s):  
Marianthi Bouzouni ◽  
Evangelos Gavalas ◽  
Filippos Chatzigeorgiou ◽  
Spyros Papaefthymiou

The current work examines hydrogen sensitivity in different pipeline steels (X65, X70 and X80 HSLA grades) from four productions. Hydrogen Induced Cracking (HIC) experiments were performed and then the welds were characterized via optical and scanning electron microscopy techniques. The optical micrographs revealed cracks only in one of the four welds. Transverse cracks were found along bainitic-ferrite/carbide islands within the heat affected zone and the base metal of production B. Found inclusions e.g. MnS inside the cracks acted as initiation points for the HIC. However, the weld zones in all productions consisting of acicular ferrite and grain boundary ferrite were found to be resistant in hydrogen embrittlement. Therefore, the presence of bainitic ferrite with carbides at the grain boundaries in the microstructures and the intense presence of MnS inclusions caused HIC in pipeline steel from production B. The manufacturing process, the forming and welding conditions in the examined case seem not to have negatively influenced the pipeline steel in terms of HIC.


Sign in / Sign up

Export Citation Format

Share Document