single base pair change
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17616 ◽  
Author(s):  
Akila Jayaraman ◽  
Claudia Pappas ◽  
Rahul Raman ◽  
Jessica A. Belser ◽  
Karthik Viswanathan ◽  
...  

Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 1761-1767 ◽  
Author(s):  
Ching Leang ◽  
Derek R. Lovley

The Fe(III)-reducing micro-organism Geobacter sulfurreducens requires an outer-membrane c-type cytochrome, OmcB, for Fe(III) reduction, but a related cytochrome, OmcC, which is 73 % identical to OmcB, is not required. The omcB and omcC genes are part of a tandem chromosomal duplication consisting of two repeated clusters of four genes. The 2·7 kb sequences preceding omcB and omcC are identical with the exception of a single base pair change. Studies that combined genetic, Northern blotting and primer extension analyses demonstrated that both omcB and omcC are transcribed as monocistronic and polycistronic (orf1-orf2-omcB/omcC) transcripts. All of the promoters for the various transcripts were found to be located within the 2·7 kb identical region upstream of omcB and omcC. The sequences of the promoter regions for the two monocistronic transcripts are identical and equidistant from the omcB or omcC start codons. The promoters for the two polycistronic transcripts, in contrast, are distinct. One is specific for transcription of orf1-orf2-omcB and the other is associated with transcription of orf1-orf2-omcC. Studies with an RpoS-deficient mutant suggested that transcription from all four promoters is RpoS dependent under one or more growth conditions. Deletion of orfR, a gene immediately upstream of orf1-orf2-omcB that encodes a putative transcriptional regulator, significantly lowered the omcB transcription when Fe(III) was the electron acceptor and partially inhibited Fe(III) reduction. In contrast, levels of omcC transcripts were unaffected in the orfR mutant. These results indicate that omcB and omcC operons represent a rare instance in which duplicated operons, located in tandem on the chromosome, have different transcriptional regulation.


Nature ◽  
1994 ◽  
Vol 367 (6461) ◽  
pp. 384-386 ◽  
Author(s):  
Matthieu H. A. J. Joosten ◽  
Ton J. Cozijnsen ◽  
Pierre J. G. M. De Wit

1985 ◽  
Vol 5 (11) ◽  
pp. 2951-2958 ◽  
Author(s):  
C F Wright ◽  
R S Zitomer

The transcription of the CYC7 gene of Saccharomyces cerevisiae, encoding the iso-2-cytochrome c protein, is controlled by two upstream regulatory elements, a positive element and a negative element. The nature of the DNA sequences in the negative element were investigated in a two-part approach. The first involved the construction of a CYC7-galK fusion gene which placed the coding sequence of the Escherichia coli galactokinase gene under the regulation of the CYC7 upstream sequences. This fusion allowed the quantitation by galactokinase enzyme assays of the effects on gene expression of a variety of previously isolated deletion mutations within the negative site. The results suggested that the negative site contained three related sequences. This hypothesis was tested in the second part of these studies, the selection of point mutations within the region of the negative site which led to increased CYC7 expression. Point mutations were introduced by a technique which induced mutations within a localized region at high efficiency. All but one of the mutations involved more than a single base-pair change. The mutations followed the pattern that multiple base-pair changes occurred in one repeat or single base-pair changes occurred in two repeats, with the exception of one mutant, which had a single base-pair change in one repeat. This pattern of mutations and the base pairs that were altered strongly supported the hypothesis that the repeats are integral elements of the negative site.


1985 ◽  
Vol 5 (11) ◽  
pp. 2951-2958
Author(s):  
C F Wright ◽  
R S Zitomer

The transcription of the CYC7 gene of Saccharomyces cerevisiae, encoding the iso-2-cytochrome c protein, is controlled by two upstream regulatory elements, a positive element and a negative element. The nature of the DNA sequences in the negative element were investigated in a two-part approach. The first involved the construction of a CYC7-galK fusion gene which placed the coding sequence of the Escherichia coli galactokinase gene under the regulation of the CYC7 upstream sequences. This fusion allowed the quantitation by galactokinase enzyme assays of the effects on gene expression of a variety of previously isolated deletion mutations within the negative site. The results suggested that the negative site contained three related sequences. This hypothesis was tested in the second part of these studies, the selection of point mutations within the region of the negative site which led to increased CYC7 expression. Point mutations were introduced by a technique which induced mutations within a localized region at high efficiency. All but one of the mutations involved more than a single base-pair change. The mutations followed the pattern that multiple base-pair changes occurred in one repeat or single base-pair changes occurred in two repeats, with the exception of one mutant, which had a single base-pair change in one repeat. This pattern of mutations and the base pairs that were altered strongly supported the hypothesis that the repeats are integral elements of the negative site.


1982 ◽  
Vol 40 (3) ◽  
pp. 233-247 ◽  
Author(s):  
Gianni Cesareni ◽  
Luisa Castagnoli ◽  
Sydney Brenner

SUMMARYThe insertion of a high-copy-number plasmid into a lambdoid phage chromosome which lacks a functional repressor gene confers on the hybrid ‘phasmid’ the capacity to grow on an immune lysogen. This was found to be due to titration of repressor because of plasmid replication. We have exploited this property in order to isolate mutants that affect plasmid replication. These mutants have been mapped in a region that was previously characterized as necessary for plasmid replication and incompatibility properties. Some of the mutations could revert at frequencies characteristic of single-base-pair change mutations.


Sign in / Sign up

Export Citation Format

Share Document