Regulation of two highly similar genes, omcB and omcC, in a 10 kb chromosomal duplication in Geobacter sulfurreducens

Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 1761-1767 ◽  
Author(s):  
Ching Leang ◽  
Derek R. Lovley

The Fe(III)-reducing micro-organism Geobacter sulfurreducens requires an outer-membrane c-type cytochrome, OmcB, for Fe(III) reduction, but a related cytochrome, OmcC, which is 73 % identical to OmcB, is not required. The omcB and omcC genes are part of a tandem chromosomal duplication consisting of two repeated clusters of four genes. The 2·7 kb sequences preceding omcB and omcC are identical with the exception of a single base pair change. Studies that combined genetic, Northern blotting and primer extension analyses demonstrated that both omcB and omcC are transcribed as monocistronic and polycistronic (orf1-orf2-omcB/omcC) transcripts. All of the promoters for the various transcripts were found to be located within the 2·7 kb identical region upstream of omcB and omcC. The sequences of the promoter regions for the two monocistronic transcripts are identical and equidistant from the omcB or omcC start codons. The promoters for the two polycistronic transcripts, in contrast, are distinct. One is specific for transcription of orf1-orf2-omcB and the other is associated with transcription of orf1-orf2-omcC. Studies with an RpoS-deficient mutant suggested that transcription from all four promoters is RpoS dependent under one or more growth conditions. Deletion of orfR, a gene immediately upstream of orf1-orf2-omcB that encodes a putative transcriptional regulator, significantly lowered the omcB transcription when Fe(III) was the electron acceptor and partially inhibited Fe(III) reduction. In contrast, levels of omcC transcripts were unaffected in the orfR mutant. These results indicate that omcB and omcC operons represent a rare instance in which duplicated operons, located in tandem on the chromosome, have different transcriptional regulation.

2018 ◽  
Vol 97 (13) ◽  
pp. 1477-1484 ◽  
Author(s):  
L. Lei ◽  
R.N. Stipp ◽  
T. Chen ◽  
S.Z. Wu ◽  
T. Hu ◽  
...  

The VicRK 2-component system of Streptococcus mutans regulates genes associated with cell wall biogenesis and biofilm formation. A putative RNase III–encoding gene ( rnc) is located downstream from the vicRKX operon. The goals of this study were to investigate the potential role of VicR in the regulation of adjacent downstream genes and evaluate transcription levels of vicR during planktonic and biofilm growth. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to investigate whether vicRKX and adjacent downstream genes were cotranscribed. Binding of purified recombinant VicR protein to promoter regions of vicR, rnc, and syfA genes was confirmed by electrophoretic mobility shift assay and by chromatin immunoprecipitation analyses. VicR antisense (AS vicR) RNA was detected by Northern blotting and qRT-PCR assays. AS vicR overexpression mutants were constructed, and the biofilm biomass was determined by crystal violet microtiter assay. Adjacent downstream genes rnc, smc, syfA, smu.1511, and syfB were cotranscribed with vicRKX. The predicted promoter regions of vicR, rnc, and syfA genes were directly regulated by VicR. An AS vicR RNA transcript was detected upstream of the rnc gene. Expression of the AS vicR RNA transcript was elevated in planktonic cultures and repressed during biofilm growth. In addition, Western blot data showed that expression of the VicR protein decreased by 35% in planktonic as compared with biofilm cultures. Furthermore, we show that overexpression of AS vicR led to a reduction in biofilm formation. The downstream genes rnc, smc, syfA, smu.1511, and syfB are cotranscribed with vicRKX. VicR is autophosphorylated, and rnc and syfA are directly regulated by VicR. Expression of VicR protein correlated inversely with different levels of AS vicR RNA transcript and growth conditions. The biofilm biomass decreased in the AS vicR overexpression mutant. These data suggest a role for the AS vicR RNA transcript in posttranscriptional regulation of VicR protein production in S. mutans.


2021 ◽  
pp. gr.275750.121
Author(s):  
Debasish Sarkar ◽  
Z. Iris Zhu ◽  
Elisabeth R. Knoll ◽  
Emily Paul ◽  
David Landsman ◽  
...  

The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates pre-initiation complex (PIC) assembly, only transiently prior to Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy exhibits similar dependence on Mediator under normal and heat shock conditions. However, while Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1∆ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.


1982 ◽  
Vol 40 (3) ◽  
pp. 233-247 ◽  
Author(s):  
Gianni Cesareni ◽  
Luisa Castagnoli ◽  
Sydney Brenner

SUMMARYThe insertion of a high-copy-number plasmid into a lambdoid phage chromosome which lacks a functional repressor gene confers on the hybrid ‘phasmid’ the capacity to grow on an immune lysogen. This was found to be due to titration of repressor because of plasmid replication. We have exploited this property in order to isolate mutants that affect plasmid replication. These mutants have been mapped in a region that was previously characterized as necessary for plasmid replication and incompatibility properties. Some of the mutations could revert at frequencies characteristic of single-base-pair change mutations.


2015 ◽  
Vol 197 (24) ◽  
pp. 3788-3796 ◽  
Author(s):  
Takayuki Kuge ◽  
Haruhiko Teramoto ◽  
Masayuki Inui

ABSTRACTInCorynebacterium glutamicumATCC 31831, a LacI-type transcriptional regulator AraR, represses the expression ofl-arabinose catabolism (araBDA), uptake (araE), and the regulator (araR) genes clustered on the chromosome. AraR binds to three sites: one (BSB) between the divergent operons (araBDAandgalM-araR) and two (BSE1and BSE2) upstream ofaraE.l-Arabinose acts as an inducer of the AraR-mediated regulation. Here, we examined the roles of these AraR-binding sites in the expression of the AraR regulon. BSBmutation resulted in derepression of botharaBDAandgalM-araRoperons. The effects of BSE1and/or BSE2mutation onaraEexpression revealed that the two sites independently function as theciselements, but BSE1plays the primary role. However, AraR was shown to bind to these sites with almost the same affinityin vitro. Taken together, the expression ofaraBDAandaraEis strongly repressed by binding of AraR to a single site immediately downstream of the respective transcriptional start sites, whereas the binding site overlapping the −10 or −35 region of thegalM-araRandaraEpromoters is less effective in repression. Furthermore, downregulation ofaraBDAandaraEdependent onl-arabinose catabolism observed in the BSBmutant and the AraR-independentaraRpromoter identified withingalM-araRadd complexity to regulation of the AraR regulon derepressed byl-arabinose.IMPORTANCECorynebacterium glutamicumhas a long history as an industrial workhorse for large-scale production of amino acids. An important aspect of industrial microorganisms is the utilization of the broad range of sugars for cell growth and production process. MostC. glutamicumstrains are unable to use a pentose sugarl-arabinose as a carbon source. However, genes forl-arabinose utilization and its regulation have been recently identified inC. glutamicumATCC 31831. This study elucidates the roles of the multiple binding sites of the transcriptional repressor AraR in the derepression byl-arabinose and thereby highlights the complex regulatory feedback loops in combination withl-arabinose catabolism-dependent repression of the AraR regulon in an AraR-independent manner.


2006 ◽  
Vol 188 (7) ◽  
pp. 2554-2567 ◽  
Author(s):  
Annette Cramer ◽  
Robert Gerstmeir ◽  
Steffen Schaffer ◽  
Michael Bott ◽  
Bernhard J. Eikmanns

ABSTRACT In Corynebacterium glutamicum, the acetate-activating enzymes phosphotransacetylase and acetate kinase and the glyoxylate cycle enzymes isocitrate lyase and malate synthase are coordinately up-regulated in the presence of acetate in the growth medium. This regulation is due to transcriptional control of the respective pta-ack operon and the aceA and aceB genes, brought about at least partly by the action of the negative transcriptional regulator RamB. Using cell extracts of C. glutamicum and employing DNA affinity chromatography, mass spectrometry, and peptide mass fingerprinting, we identified a LuxR-type transcriptional regulator, designated RamA, which binds to the pta-ack and aceA/aceB promoter regions. Inactivation of the ramA gene in the genome of C. glutamicum resulted in mutant RG2. This mutant was unable to grow on acetate as the sole carbon and energy source and, in comparison to the wild type of C. glutamicum, showed very low specific activities of phosphotransacetylase, acetate kinase, isocitrate lyase, and malate synthase, irrespective of the presence of acetate in the medium. Comparative transcriptional cat fusion experiments revealed that this deregulation takes place at the level of transcription. By electrophoretic mobility shift analysis, purified His-tagged RamA protein was shown to bind specifically to the pta-ack and the aceA/aceB promoter regions, and deletion and mutation studies revealed in both regions two binding motifs each consisting of tandem A/C/TG4-6T/C or AC4-5A/G/T stretches separated by four or five arbitrary nucleotides. Our data indicate that RamA represents a novel LuxR-type transcriptional activator of genes involved in acetate metabolism of C. glutamicum.


2006 ◽  
Vol 74 (10) ◽  
pp. 5625-5635 ◽  
Author(s):  
Ulrike M. Samen ◽  
Bernhard J. Eikmanns ◽  
Dieter J. Reinscheid

ABSTRACT Streptococcus agalactiae is part of the normal flora of the human gastrointestinal tract and also the leading cause of bacterial infections in human newborns and immunocompromised adults. The colonization and infection of different regions within the human host require a regulatory network in S. agalactiae that senses environmental stimuli and controls the formation of specific virulence factors. In the present study, we characterized an Rgg-like transcriptional regulator, designated RovS (regulator of virulence in Streptococcus agalactiae). Deletion of the rovS gene in the genome of S. agalactiae resulted in strain 6313 ΔrovS, which exhibited an increased attachment to immobilized fibrinogen and a significant increase in adherence to the eukaryotic lung epithelial cell line A549. Quantification of expression levels of known and putative S. agalactiae virulence genes by real-time PCR revealed that RovS influences the expression of fbsA, gbs0230, sodA, rogB, and the cyl operon. The altered gene expression in mutant 6313 ΔrovS was restored by plasmid-mediated expression of rovS, confirming the RovS deficiency as the cause for the observed changes in virulence gene expression in S. agalactiae. DNA electrophoretic mobility shift assays showed that RovS specifically binds to the promoter regions of fbsA, gbs0230, sodA, and the cyl operon, indicating that RovS directly regulates their expression. Deletion and mutation studies in the promoter region of fbsA, encoding the main fibrinogen receptor in S. agalactiae, identified a RovS DNA motif. Similar motifs were also found in the promoter regions of gbs0230, sodA, and the cyl operon, and alignments allowed us to propose a consensus sequence for the DNA-binding site of RovS.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 789-794 ◽  
Author(s):  
Amin Omairi-Nasser ◽  
Carla V. Galmozzi ◽  
Amel Latifi ◽  
M. Isabel Muro-Pastor ◽  
Ghada Ajlani

In several cyanobacteria, petH, the gene encoding ferredoxin:NADP oxidoreductase (FNR), is transcribed from at least two promoters depending on growth conditions. Two transcripts (short and long) are translated from two different translation initiation sites, resulting in two isoforms (large and small, respectively). Here, we show that in Synechocystis PCC6803 the global transcriptional regulator NtcA activates transcription from the distal petH promoter. Modification of the NtcA-binding site prevents NtcA binding to the promoter in vitro and abolishes accumulation of the small isoform of FNR in vivo. We also demonstrate that a similar petH transcription and translation regime occurs in other cyanobacteria. The conditions under which this system operates provide hints for the function of each FNR isoform.


2007 ◽  
Vol 189 (13) ◽  
pp. 4827-4836 ◽  
Author(s):  
Kangmin Duan ◽  
Michael G. Surette

ABSTRACT The lasI-lasR and the rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa regulate the expression of numerous cellular and secreted virulence factor genes and play important roles in the development of biofilms. The las and rhl systems themselves are known to be directly or indirectly regulated by a number of transcriptional regulators, and consequently, their expression is sensitive to environmental conditions. In this report, the activities of these two quorum-sensing systems have been examined systematically under 46 growth conditions, and the regulation by environmental conditions has been investigated. The relative timing and strength of expression of these two systems varied significantly under different conditions, which contrasts with the notion of a preset hierarchy with these two systems in P. aeruginosa. Depending on the growth conditions, the correlation between each synthase and its cognate transcriptional regulator also varied, suggesting that the transcription of these genes independently allows for further fine tuning of each system. Finally, we observe that the activities of both the lasI-lasR and the rhlI-rhlR quorum-sensing systems were dramatically enhanced in the presence of extracts of sputum samples from cystic fibrosis patients.


Sign in / Sign up

Export Citation Format

Share Document