instability frequency
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Eric Yang ◽  
Pierre E. Sullivan

Abstract The response of a separated boundary layer to synthetic jet flow control at the global wake instability (F+ ≈ 𝒪(1)) and the shear-layer instability (F+ ≈ 𝒪(10)) measured by particle image velocimetry are presented. The visualization shows that in each of the control cases, coherent vorticity develops and breaks down into a turbulent wake. When the jets are actuated by burst-modulation at the wake instability frequency, they induce regular formation and detachment of large-scale vorticity to form a wide turbulent wake. Excitation at the shear-layer instability frequency, on the other hand, produces a train of alternating velocity fluctuations in the boundary layer which dissipate to a narrower wake. Proper orthogonal decomposition of the velocity fields show that the physical extent of the jet-induced coherent structures is decreased with increasing addition of momentum for both excitation frequencies.


Author(s):  
Talitha do Nascimento Brito ◽  
Manoel Henrique Reis Nascimento ◽  
Francisco Rodrigues Maia

Aerospace ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 82
Author(s):  
Esteban Gonzalez-Juez

With the goal of assessing the capability of Computational Fluid Dynamics (CFD) to simulate combustion instabilities, the present work considers a premixed, bluff-body-stabilized combustor with well-defined inlet and outlet boundary conditions. The present simulations produce flow behaviors in good qualitative agreement with experimental observations. Notably, the flame flapping and standing acoustic waves seen in the experiments are reproduced by the simulations. Moreover, present predictions for the dominant instability frequency have an error of 7% and those of the rmspressure fluctuations show an error of 16%. In addition, an analysis of simulation results for the limit cycle complements previous experimental analyses by supporting the presence of an active frequency-locking mechanism.


Author(s):  
Sanghyeok Kwak ◽  
Seongpil Joo ◽  
Seongheon Kim ◽  
Jaehong Choi ◽  
Youngbin Yoon

Abstract In this study, the combustion instability characteristics are experimentally investigated in a partially premixed gas turbine model combustor. The combustor is operated with methane and preheated air as the fuel and oxidizer, respectively, at atmospheric pressure. The experiment is carried out at various equivalence ratios and flow rates of fuel and air to investigate the effect on the combustion instability frequency transition. According to the experimental results, the transition of the combustion instability frequency to higher longitudinal mode occurs because of the flow rate variation. To explain the frequency shift phenomenon, the concept of convection time is introduced, which is mostly affected by the flame position and exit velocity of the fuel-air mixture. The flame positions are measured using OH planar laser-induced fluorescence (OH-PLIF), and the flow field information is obtained using particle image velocimetry to calculate the convection time. The measurement results show that the injection velocities of fuel and air are also important factors in determining the combustion instability frequency as well as the equivalence ratio, which is a crucial parameter of the flame position. As a result, it is found that the decrease in convection time owing to a closer distance from the dump plane to the flame and a faster exit velocity of the fuel-air mixture causes the combustion instability frequency mode shift. Additionally, the structural characteristics of the flame are analyzed using high-speed OH-PLIF measurement. The differences in the flame structure between the stable and unstable flames in the 2nd and 3rd longitudinal modes are analyzed. The change in the unburned mixture is mainly observed and the relationship between the dynamic pressure, heat release rate, and length of the unburned region is also analyzed.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino

A semi-empirical model for the estimation of the Kelvin–Helmholtz (KH) instability frequency, in the case of short laminar separation bubbles over airfoils, has been developed. To this end, the Thwaites's pressure gradient parameter has been adopted to account for the effects induced by the aerodynamic loading distribution as well as by the Reynolds number on the separated shear layer thickness at separation. The most amplified frequency predicted by linear stability theory (LST) for a piecewise linear profile, which can be considered as the KH instability frequency, has been related to the shear layer thickness at separation, hence to the Reynolds number and the aerodynamic loading distribution through the Thwaites's pressure gradient parameter. This procedure allows the formulation of a functional dependency between the Strouhal number of the shedding frequency based on exit conditions and the dimensionless parameters. Experimental results obtained in different test cases, characterized by different Reynolds numbers and aerodynamic loading distributions, have been used to validate the model, as well as to identify the regression curve best fitting the data. The semi-empirical correlation here derived can be useful to set the activation frequency of active flow control devices for the optimization of boundary layer separation control strategies.


Author(s):  
Jisu Yoon ◽  
Seongpil Joo ◽  
Min Chul Lee ◽  
Jeongjin Kim ◽  
Jaeyo Oh ◽  
...  

Recently, energy resource depletion and unstable energy prices have become global issues. Worldwide pressure to secure and make more gas and oil available to support global power needs has increased. To meet these needs, alternative fuels composed of various types of fuels have received attention, including biomass, dimethyl ether (DME), and low rank coal. For this reason, the fuel flexibility of the combustion system becomes more important. In this study, H2 and CH4 were selected as the main fuel composition variables and the OH-chemiluminescence measurement technique was also applied. This experimental study was conducted under equivalence ratio and fuel composition variations with a model gas turbine combustor to examine the relation between combustion instability and fuel composition. The combustion instability peak occurs in the H2/CH4 50:50 composed fuel and the combustion instability frequency shifted to higher harmonic of longitudinal mode based on the H2 concentration of the fuel. Based on instability mode and flame length calculation, the effect of the convection time during the instability frequency increasing phenomenon was found in a partially premixed gas turbine combustor. The time-lag analysis showed that the short convection time in a high H2 concentration fuel affects the feedback loop period reduction and, in these conditions, high harmonics of longitudinal mode instability occurs. This fundamental study on combustion instability frequency shifting characteristics was conducted for H2/CH4 composed fuel and the results contribute key information for the conceptual design of a fuel flexible gas turbine and its optimum operation conditions.


Sign in / Sign up

Export Citation Format

Share Document