scholarly journals Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

Author(s):  
Akash Ojha ◽  
Mihir Samantaray ◽  
Dhirendra Nath Thatoi ◽  
Seshadev Sahoo
Author(s):  
Hayri Sezer ◽  
Nazmul Ahsan ◽  
Shijin P. Kozhumal ◽  
Andy Ritenour ◽  
Sudhir Kaul

Abstract In direct metal laser sintering process (DMLS), the nonuniform heat transfer and resulting temperature gradient across the part result in thermal residual stress within the part which introduces local deformation. This overall effect ultimately leads to part distortion and affects the mechanical properties of the part. As far as temperature gradient and thermal residual stress are concerned, the crucial process parameter that can be tailored to alleviate the thermal anisotropic effect from the laser heat source is the scanning pattern. In this study, an in-house transient three-dimensional computational model has been developed to analyze thermal behavior in the DMLS process for different scanning patterns. The governing equations for heat transfer are discretized using a finite volume method. An implicit scheme is used for time integration. The thermo-physical properties, thermal conductivity of the metal powder, convection heat transfer coefficient, and specific heat of the metal powder are updated for every time step. The model considers convective and radiative Neumann boundary conditions for the lateral and top surfaces and a constant temperature boundary condition for the bottom surface of rectangular geometries. The laser power is implemented as a moving radiative Neumann boundary condition that follows any given scanning pattern. In this study, two contour parallel (spiral) scanning patterns, center to edge and edge to center, and their corresponding thermal effects have been analyzed. The results show that rectangular spiral pattern with a center to edge scanning direction has the lowest thermal gradient which results in the lowest residual stresses.


2017 ◽  
Vol 11 (14) ◽  
pp. 1921-1929 ◽  
Author(s):  
Annaig Martin‐Guennou ◽  
Yves Quéré ◽  
Eric Rius ◽  
Christian Person ◽  
Shaima Enouz‐Vedrenne ◽  
...  

Author(s):  
Bin Xiao ◽  
Yuwen Zhang

A three-dimensional model describing melting and resolidification of direct metal laser sintering of loose powders on top of sintered layers with a moving Gaussian laser beam is developed. Natural convection in the liquid pool driven by buoyancy and Marangoni effects is taken into account. A temperature transforming model is employed to model melting and resolidification in the laser sintering process. The continuity, momentum, and energy equations are solved using a finite volume method. The effects of dominant processing parameters including number of the existing sintered layers underneath, laser scanning velocity, and initial porosity on the sintering process are investigated.


2014 ◽  
Vol 903 ◽  
pp. 114-117 ◽  
Author(s):  
Izhar Abd Aziz ◽  
Brian Gabbitas ◽  
Mark Stanford

The purpose of this work is to investigate the microstructure and tensile strength of Ti6Al4V pre-alloyed powders produced by a direct metal laser sintering technique. Traditionally, Ti6Al4V products for biomedical applications were produced through hot working or machining of wrought semi-finished products. A change in the production route for manufacturing Ti6Al4V products, from the more traditional methods to an additive manufacturing route, requires an investigation of microstructure and mechanical properties because these are strongly influenced by the production route. The microstructure obtained through rapid solidification during laser sintering shows a very fine α+β lamellar morphology. There is also evidence of martensite which was expected due to high solidification rate of the liquid pool from a temperature above the β-transus during the laser sintering process. Structurally, good mechanical properties which are comparable to the bulk material were obtained.


Sign in / Sign up

Export Citation Format

Share Document