Surface finishing requirements on various internal cylindrical components: A review

2021 ◽  
pp. 251659842110355
Author(s):  
Talwinder Singh Bedi ◽  
Ajay Singh Rana

Modern technology requires producing of a sustainable product with a high surface accuracy. In applications where the surface quality is highly considerable in various internal cylindrical components requires technology to manufacture an ultrafine surface finish. There is, in general, a probability of inducing errors into products by the traditional finishing processes (such as grinding/honing), which lead to failure. Preferably with some evidence in the main text. Further, the advanced finishing processes are developed, where the finishing forces can be controlled by varying the power output. Instead of a solid abrasive tool, the smart polishing fluid is used, which gets activated under the magnetic fields. In this manuscript, the material removal under different internal surface finishing processes is elaborated, which helps in improving the surface quality of various industrial components. Also, the surface quality produced on various industrial components after traditional as well as advanced finishing processes are discussed.

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Lida Heng ◽  
Yon Jig Kim ◽  
Sang Don Mun

AbstractRecent developments in the engineering industry have created a demand for advanced materials with superior mechanical properties and high-quality surface finishes. Some of the conventional finishing methods such as lapping, grinding, honing, and polishing are now being replaced by non-conventional finishing processes. Magnetic Abrasive Finishing (MAF) is a non-conventional superfinishing process in which magnetic abrasive particles interact with a magnetic field in the finishing zone to remove materials to achieve very high surface finishing and deburring simultaneously. In this review paper, the working principles, processing parameters, and current limitations for the MAF process are examined via reviewing important work in the literature. Additionally, future developments of the MAF process are discussed.


Author(s):  
Sachin Singh ◽  
M Ravi Sankar

The finishing operation completes the manufacturing cycle of a component. Depending on the level of finish (micro and nano) required on the component surface, different finishing processes are employed. Several components employed in medical, automotive and chemical industries use different types of passages for the flow of fluid. The surface roughness of such passages decides the functionality of the component. Drug-eluting stents are one of the recent advancements in the medical industry. They possess microholes for release of the drugs to the point of cure. Microholes are mostly fabricated by thermal-based micromachining processes that generate metallurgically destroyed surface layers with high surface roughness. Later, these are polished using chemical or electrochemical polishing techniques, which chemically destroy the quality of the surface. These metallurgically and chemically modified (destroyed/changed) rough surfaces on the microhole wall can cause contamination of the drug. So in this article, microholes of diameter 850 ± 30 µm are fabricated in surgical stainless steel (SS 316L) workpieces using the electric discharge micromachining process. Machined microholes are finished by employing a non-traditional finishing process called the abrasive flow finishing process. Instead of using a commercially available expensive abrasive flow finishing medium, the economic medium is fabricated in-house, and its rheological study is carried out. Machining process produces microholes with a surface roughness of about 1.40 ± 0.10 µm. Later, by finishing of microholes with the abrasive flow finishing process, the surface roughness is reduced to 150 nm (percentage surface roughness improvement of about 88.53%). Therefore, the abrasive flow finishing process is a viable alternative to chemical-based polishing processes as it removes the recast layer and achieves nanosurface roughness.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2871
Author(s):  
Qiuling Wen ◽  
Xinyu Wei ◽  
Feng Jiang ◽  
Jing Lu ◽  
Xipeng Xu

Sapphire substrates with different crystal orientations are widely used in optoelectronic applications. In this work, focused ion beam (FIB) milling of single-crystal sapphire with A-, C-, and M-orientations was performed. The material removal rate (MRR) and surface roughness (Sa) of sapphire with the three crystal orientations after FIB etching were derived. The experimental results show that: The MRR of A-plane sapphire is slightly higher than that of C-plane and M-plane sapphires; the Sa of A-plane sapphire after FIB treatment is the smallest among the three different crystal orientations. These results imply that A-plane sapphire allows easier material removal during FIB milling compared with C-plane and M-plane sapphires. Moreover, the surface quality of A-plane sapphire after FIB milling is better than that of C-plane and M-plane sapphires. The theoretical calculation results show that the removal energy of aluminum ions and oxygen ions per square nanometer on the outermost surface of A-plane sapphire is the smallest. This also implies that material is more easily removed from the surface of A-plane sapphire than the surface of C-plane and M-plane sapphires by FIB milling. In addition, it is also found that higher MRR leads to lower Sa and better surface quality of sapphire for FIB etching.


2013 ◽  
Vol 581 ◽  
pp. 211-216 ◽  
Author(s):  
Jiří Čop ◽  
Imrich Lukovics

This research paper focuses on grinding of materials used for tools (100Cr6 (CSN 4 14109), X210Cr12 ( CSN 4 19436) and epoxy resin) using grinding wheels from cubic boron nitride and diamond. The disadvantage of grinding of difficult-to-machine materials is higher wear of grinding wheels. The modern grinding wheels are able to achieve high accuracy of dimensions and high surface quality with a smaller wear of grinding wheels then grinding wheels from conventional materials. Correctly selected technological conditions are one of the most important matters to achieve the required surface quality. The main aim of this research is to determine the influence of technological conditions to quality of surface after planar grinding. The research determines the influence of the grain type of grinding wheels, feed rate and cutting depth on the quality of functional surfaces.


Author(s):  
Bing Chen ◽  
Bing Guo ◽  
Qingliang Zhao

To realize the high-efficiency grinding of the aspheric surfaces on monocrystal silicon, a novel on-machine truing method for the resin-bonded arc-shaped diamond wheels was proposed utilizing rotary green silicon carbon rod, and then the high-efficiency grinding of the aspheric surface was performed. First, the principle of mutual-wear for truing arc-shaped diamond wheel was introduced, and the truing performance was studied. The experimental results showed that the top morphology of the trued arc-shaped wheel was precise and smooth, and the run error on the top of the trued arc-shaped wheel was reduced from 41 to 10 µm after truing. Furthermore, high-efficiency grinding experiments revealed that the surface quality of the aspheric surface increased with the increase in the average material removal rates.


2009 ◽  
Vol 69-70 ◽  
pp. 113-117
Author(s):  
Qian Fa Deng ◽  
Dong Hui Wen ◽  
Feng Chen ◽  
Li Tao ◽  
Ju Long Yuan

To obtain high surface quality and high finishing efficiency in machining SUS440 stainless steel, a novel machining technology employing a semi-fixed abrasive plate (SFAP) is adopted. The SFAP is developed for preventing lapped surface from damage caused by larger particles (from grain size dispersion or from outside of processing area, larger particles could bring uneven load distribution on processing region). The effects of different parameters on the surface quality and the material removal rate (MRR) of SUS440 stainless steel which is lapped by SFAP are investigated in this paper. The control parameters of the lapping process include the lapping time, the load, the rotating speed of the lapping plate, and etc. SFAP of 800# SiC abrasive used, Experimental results indicate that SFAP can avoid the large scratch effectively and the surface roughness (Ra) of the workpiece could be improved from 250 nm to 50 nm in 12 Min. A nearly mirror-like surface can be obtained.


2018 ◽  
Vol 2 (4) ◽  
pp. 82 ◽  
Author(s):  
Adrián Rodríguez ◽  
Asier Fernández ◽  
Luís López de Lacalle ◽  
Leonardo Sastoque Pinilla

Many manufacturing sectors require high surface finishing. After machining operations such as milling or drilling, undesirable burrs or insufficient edge finishing may be generated. For decades, many finishing processes have been on a handmade basis; this fact is accentuated when dealing with complex geometries especially for high value-added parts. In recent years, there has been a tendency towards trying to automate these kinds of processes as far as possible, with repeatability and time/money savings being the main purposes. Based on this idea, the aim of this work was to check new tools and strategies for finishing aeronautical parts, especially critical engine parts made from Inconel 718, a very ductile nickel alloy. Automating the edge finishing of chamfered holes is a complicated but very important goal. In this paper, flexible abrasive tools were used for this purpose. A complete study of different abrasive possibilities was carried out, mainly focusing on roughness analysis and the final edge results obtained.


2006 ◽  
Vol 532-533 ◽  
pp. 225-228 ◽  
Author(s):  
Wei Liang Zeng ◽  
Zhen Long Wang ◽  
Qiang Gao ◽  
Wen Zhuo Li ◽  
Wan Sheng Zhao

This paper presents new machining technology of micro-EDM with lower working voltage in RC pulse power source. How to control the discharging energy of one pulse supplied by RC power is crucial to the technology of micro-EDM. The process of discharging has been studied, then the feasibility of machining with lower working voltage has been put forward, in order to reduce the discharge energy of one pulse effectively. On the basis of a great deal of experiments, the effect of working voltage on surface quality is studied, also the effect of working voltage on machining efficiency has been found out and been analyzed theoretically. The result shows that lower working voltage can reduce the working energy observably, and then improve the machining surface quality attended by reducing of machining efficiency. However, there is a good machining effect when the working voltage is about 15~20V. Considering working efficiency, a new technology of block electro-discharge grinding (BEDG) with lower working voltage has been applied. As shown by the experimental result with the technology, the minimum diameter of micro-shaft reaches 32m. Moreover, the micro-shaft has very high surface quality of Ra 0.1252m and its coaxial diameter error is controlled within 0.152m.


2010 ◽  
Vol 102-104 ◽  
pp. 495-501
Author(s):  
Cong Da Lu ◽  
Xiao Jun Gong ◽  
Hong Jia ◽  
Guo Zhong Chai

Fluid magnetic abrasive (FMA) is a new precision finishing process. It has the capability of processing free shape surfaces and complex cavities. Due to its strong adjustability and controllability, FMA could be regarded as the final process of machining which could greatly improve the surface quality of workpiece. The paper first introduces the component and machining mechanism of FMA, secondly it describes the model of the material removal in the process, thirdly it presents the devices of FMA polishing. At the end, a grinding head tool based machining mode is proposed for realizing the polishing of internal cavity.


Sign in / Sign up

Export Citation Format

Share Document