platinum group mineral
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
pp. 1-25
Author(s):  
Anna Vymazalová ◽  
Mark D. Welch ◽  
František Laufek ◽  
Vladimir V. Kozlov ◽  
Chris J. Stanley ◽  
...  

Author(s):  
Andrei Y. Barkov ◽  
Luca Bindi ◽  
Nobumichi Tamura ◽  
Robert F. Martin ◽  
Chi Ma ◽  
...  

ABSTRACT Fleetite, Cu2RhIrSb2, a new species of platinum-group mineral (PGM), was discovered intergrown with an Os–Ir–Ru alloy in the Miass Placer Zone (Au–PGE), southern Urals, Russia. A single grain 50 μm across was found. Osmium, ruthenium, and iridium are the main associated minerals; also present are Pt–Fe alloys, laurite, Sb-rich irarsite, Rh-rich tolovkite, kashinite, anduoite, ferronickelplatinum, heazlewoodite, PGE-bearing pentlandite and digenite, as well as micrometric inclusions of forsterite (Fo93.7), chromite–magnesiochromite, and Mg-rich edenite. In reflected light, fleetite is light gray; it is opaque, isotropic, non-pleochroic, and non-bireflectant. We report reflectance values measured in air. A mean of seven point-analyses (wavelength-dispersive spectrometry) gave Cu 13.93, Ni 8.60, Fe 0.10, Ir 28.07, Rh 7.91, Ru 1.96, Sb 39.28, total 99.85 wt.%, corresponding to (Cu1.41Ni0.58Fe0.01)Σ2.00(Rh0.49Ni0.36Ru0.12)Σ0.97Ir0.95Sb2.08 on the basis of six atoms per formula unit, taking into account the structural results. The calculated density is 10.83 g/cm3. Single-crystal X-ray studies show that fleetite is cubic, space group Fdm (#227), a = 11.6682(8) Å, V = 1588.59(19) Å3, and Z = 16. A least-squares refinement of X-ray powder-diffraction data gave a = 11.6575(5) Å and V = 1584.22(19) Å3. The strongest five reflections in the powder pattern [d in Å(I)(hkl)] are: 6.70(75)(111), 4.13(100)(220), 3.52(30)(311), 2.380(50)(422), 2.064(40)(440). Results of synchrotron micro-Laue diffraction experiments are consistent [a = 11.66(2) Å]. The crystal structure of fleetite was solved and refined to R = 0.0340 based upon 153 reflections with Fo > 4σ(Fo). It is isotypic with Pd11Bi2Se2 and best described as intermetallic, with all metal atoms in 12-fold coordination. Fleetite and other late exotic phases were formed by reaction of the associated alloy phases with a fluid phase enriched in Sb, As, and S in circulation in the cooling ophiolite source-rock. The mineral is named after Michael E. Fleet (1938–2017) in recognition of his significant contributions to the Earth Sciences.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 264
Author(s):  
Sheida Makvandi ◽  
Philippe Pagé ◽  
Jonathan Tremblay ◽  
Réjean Girard

The discovery of new mineral deposits contributes to the sustainable mineral industrial development, which is essential to satisfy global resource demands. The exploration for new mineral resources is challenging in Canada since its vast lands are mostly covered by a thick layer of Quaternary sediments that obscure bedrock geology. In the course of the recent decades, indicator minerals recovered from till heavy mineral concentrates have been effectively used to prospect for a broad range of mineral deposits including diamond, gold, and base metals. However, these methods traditionally focus on (visual) investigation of the 0.25–2.0 mm grain-size fraction of unconsolidated sediments, whilst our observations emphasize on higher abundance, or sometimes unique occurrence of precious metal (Au, Ag, and platinum-group elements) minerals in the finer-grained fractions (<0.25 mm). This study aims to present the advantages of applying a mineral detection routine initially developed for gold grains counting and characterization, to platinum-group minerals in < 50 µm till heavy mineral concentrates. This technique, which uses an automated scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer, can provide quantitative mineralogical and semi-quantitative chemical data of heavy minerals of interest, simultaneously. This work presents the mineralogical and chemical characteristics, the grain size distribution, and the surface textures of 2664 discrete platinum-group mineral grains recovered from the processing of 5194 glacial sediment samples collected from different zones in the Canadian Shield (mostly Quebec and Ontario provinces). Fifty-eight different platinum-group mineral species have been identified to date, among which sperrylite (PtAs2) is by far the most abundant (n = 1488; 55.86%). Textural and mineral-chemical data suggest that detrital platinum-group minerals in the studied samples have been derived, at least in part, from Au-rich ore systems.


2020 ◽  
pp. 1-29
Author(s):  
Anna Vymazalová ◽  
Viktor V. Subbotin ◽  
František Laufek ◽  
Yevgeny E. Savchenko ◽  
Chris J. Stanley ◽  
...  

Lithos ◽  
2020 ◽  
Vol 376-377 ◽  
pp. 105800
Author(s):  
Kreshimir N. Malitch ◽  
Igor S. Puchtel ◽  
Elena A. Belousova ◽  
Inna Y. Badanina

2019 ◽  
Vol 76 ◽  
pp. 246-259 ◽  
Author(s):  
Frank Reith ◽  
Gert Nolze ◽  
Romeo Saliwan-Neumann ◽  
Barbara Etschmann ◽  
Matthew R. Kilburn ◽  
...  

2019 ◽  
Vol 83 (6) ◽  
pp. 837-845 ◽  
Author(s):  
Tatiana L. Grokhovskaya ◽  
Oxana V. Karimova ◽  
Anna Vymazalová ◽  
František Laufek ◽  
Dmitry A. Chareev ◽  
...  

AbstractNipalarsite, Ni8Pd3As4, is a new platinum-group mineral discovered in the sulfide-bearing orthopyroxenite of the Monchetundra layered intrusion, Kola Peninsula, Russia (67°52′22″N, 32°47′60″E). Nipalarsite forms anhedral grains (5–80 µm in size) in intergrowths with sperrylite, kotulskite, hollingworthite, isomertieite, menshikovite, palarstanide, nielsenite and monchetundtraite enclosed in pentlandite, anthophyllite, actinolite and chlorite. Nipalarsite is brittle, has a metallic lustre and a grey streak. In plane-polarised light, nipalarsite is light grey with a blue tinge. Reflectance values in air (in %) are: 46.06 at 470 nm, 48.74 at 546 nm, 50.64 at 589 nm and 54.12 at 650 nm. Values of VHN20 fall between 400.5 and 449.2 kg.mm–2, with a mean value of 429.9 kg.mm–2, corresponding to a Mohs hardness of ~4. The average result of 27 electron microprobe wavelength dispersive spectroscopy analyses of nipalarsite is (wt.%): Ni 44.011, Pd 28.74, Fe0.32, Cu 0.85, Pt 0.01, Au 0.05, As 25.42, Sb 0.05, Te 0.39, total 99.85. The empirical formula (normalised to 15 atoms per formula unit) is: (Ni8.10Fe0.06)Σ8.16(Pd2.94Cu0.18)Σ3.12(As3.68Te0.03)Σ3.71 or, ideally, Ni8Pd3As4. Nipalarsite is cubic, space group Fm$\bar{3}$m, with a = 11.4428(9) Å, V = 1498.3(4) Å3 and Z = 8. The strongest lines in the powder X-ray diffraction pattern of synthetic Ni8Pd3As4 [d, Å (I) (hkl)] are: 2.859(10)(004), 2.623(6)(313), 2.557(6)(024), 2.334(11)(224), 2.201(35)(115,333), 2.021(100)(044), 1.906(8)(006,244) and 1.429(7)(008). The crystal structure was solved and refined from the single-crystal X-ray diffraction data of synthetic Ni8Pd3As4. The relation between natural and synthetic nipalarsite is illustrated by an electron back-scattered diffraction study of natural nipalarsite. The density calculated on the basis of the empirical formula of nipalarsite is 9.60 g.cm–3. The mineral name corresponds to the three main elements: Ni, Pd and As.


2019 ◽  
Vol 488 (2) ◽  
pp. 185-188
Author(s):  
V. V. Murzin ◽  
I. Yu. Badanina ◽  
K. N. Malitch ◽  
A. V. Ignatiev ◽  
T. A. Velivetskaya

This study presents the first data set of sulfurisotope compositions of primary Ru-Os sulfides, represented by laurite (RuS2) - erlichmanite (OsS2) series, within a primary platinum-group mineral (PGM) assemblage derived from the Verkh-Neivinsky dunite-harzburgite massif, a typical example of the mantle ophiolite association at the Middle Urals. The S-isotope signatures of Ru-Os sulfides studied are consistent with derivation of the ore material from a mantle source for Ru-Os sulfides.


2019 ◽  
Vol 57 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Eugene G. Sidorov ◽  
Anton V. Kutyrev ◽  
Elena S. Zhitova ◽  
Valery M. Chubarov ◽  
Dmitry A. Khanin

Sign in / Sign up

Export Citation Format

Share Document