wavelength dispersive spectrometry
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 2 (5) ◽  
pp. 34-40
Author(s):  
I. Y. Tanko ◽  
K. Dzigbodi-Adjimah

Investigation of the pegmatites of Keffi area was carried out in reflected light microscopy to determine the texture, elemental composition, and the semi-quantitative analysis of the ore minerals from the three groups of pegmatites identified in Keffi area: the non-mineralised, the intermediate and the mineralised pegmatites. Backscattered Electron (BSE) images and Wavelength Dispersive Spectrometry (WDS) were used. Petrographically the portion which is characterised by profuse albitisation, sericitisation and silicification is also associated with the development of cleavelandite, lepidolite, coloured tourmaline and high concentrations of cassiterite and columbite-tantalite (coltan).The order of crystallisation in the pegmatites is from microcline to quartz followed by (plagioclases) oligoclase to albite and by mica (from biotite to muscovite) then by accessory minerals such as black tourmaline, garnet, beryl and lastly oxides of Sn-Nb-Ta. Sphene, rutile, zircon, apatite, ilmenite, and magnetite appeared to be earliest minerals whilst garnet pyrite and chalcopyrite may be syn-metamorphic. Beryl and coloured tourmaline appear to be of hydrothermal phase.


Author(s):  
Andrei Y. Barkov ◽  
Luca Bindi ◽  
Nobumichi Tamura ◽  
Robert F. Martin ◽  
Chi Ma ◽  
...  

ABSTRACT Fleetite, Cu2RhIrSb2, a new species of platinum-group mineral (PGM), was discovered intergrown with an Os–Ir–Ru alloy in the Miass Placer Zone (Au–PGE), southern Urals, Russia. A single grain 50 μm across was found. Osmium, ruthenium, and iridium are the main associated minerals; also present are Pt–Fe alloys, laurite, Sb-rich irarsite, Rh-rich tolovkite, kashinite, anduoite, ferronickelplatinum, heazlewoodite, PGE-bearing pentlandite and digenite, as well as micrometric inclusions of forsterite (Fo93.7), chromite–magnesiochromite, and Mg-rich edenite. In reflected light, fleetite is light gray; it is opaque, isotropic, non-pleochroic, and non-bireflectant. We report reflectance values measured in air. A mean of seven point-analyses (wavelength-dispersive spectrometry) gave Cu 13.93, Ni 8.60, Fe 0.10, Ir 28.07, Rh 7.91, Ru 1.96, Sb 39.28, total 99.85 wt.%, corresponding to (Cu1.41Ni0.58Fe0.01)Σ2.00(Rh0.49Ni0.36Ru0.12)Σ0.97Ir0.95Sb2.08 on the basis of six atoms per formula unit, taking into account the structural results. The calculated density is 10.83 g/cm3. Single-crystal X-ray studies show that fleetite is cubic, space group Fdm (#227), a = 11.6682(8) Å, V = 1588.59(19) Å3, and Z = 16. A least-squares refinement of X-ray powder-diffraction data gave a = 11.6575(5) Å and V = 1584.22(19) Å3. The strongest five reflections in the powder pattern [d in Å(I)(hkl)] are: 6.70(75)(111), 4.13(100)(220), 3.52(30)(311), 2.380(50)(422), 2.064(40)(440). Results of synchrotron micro-Laue diffraction experiments are consistent [a = 11.66(2) Å]. The crystal structure of fleetite was solved and refined to R = 0.0340 based upon 153 reflections with Fo > 4σ(Fo). It is isotypic with Pd11Bi2Se2 and best described as intermetallic, with all metal atoms in 12-fold coordination. Fleetite and other late exotic phases were formed by reaction of the associated alloy phases with a fluid phase enriched in Sb, As, and S in circulation in the cooling ophiolite source-rock. The mineral is named after Michael E. Fleet (1938–2017) in recognition of his significant contributions to the Earth Sciences.


2020 ◽  
Author(s):  
Rocky D. Barker ◽  
Shaun L.L. Barker ◽  
Siobhan A. Wilson ◽  
Elizabeth D. Stock

Abstract Mineral distributions can be determined in drill core samples from a Carlin-type gold deposit, using micro-X-ray fluorescence (µXRF) raster data. Micro-XRF data were collected using a Bruker Tornado µXRF scanner on split drill core samples (~25 × 8 cm) with data collected at a spatial resolution of ~100 µm. Bruker AMICS software was used to identify mineral species from µXRF raster data, which revealed that many individual sample spots were mineral mixtures due to the fine-grained nature of the samples. In order to estimate the mineral abundances in each pixel, we used a linear programming (LP) approach on quantified µXRF data. Quantification of µXRF spectra was completed using a fundamental parameters (FP) standardless approach. Results of the FP method compared to standardized wavelength dispersive spectrometry (WDS)-XRF of the same samples showed that the FP method for quantification of µXRF spectra was precise (R2 values of 0.98–0.97) although the FP method gave a slight overestimate of Fe and K and an underestimate of Mg abundance. Accuracy of the quantified µXRF chemistry results was further improved by using the WDS-XRF data as a calibration correction before calculating mineralogy using LP. The LP mineral abundance predictions were compared to Rietveld refinement results using X-ray diffraction (XRD) patterns collected from powders of the same drill core samples. The root mean square error (RMSE) for LP-predicted mineralogy compared to quantitative XRD results ranges from 0.91 to 7.15% for quartz, potassium feldspar, pyrite, kaolinite, calcite, dolomite, and illite. The approaches outlined here demonstrates that µXRF maps can be used to determine mineralogy, mineral abundances, and mineralogical textures not visible with the naked eye from fine-grained sedimentary rocks associated with Carlin-type Au deposits. This approach is transferrable to any ore deposit, but particularly useful in sedimentary-hosted ore deposits where ore and gangue minerals are often fine grained and difficult to distinguish in hand specimen.


2020 ◽  
pp. 1-5
Author(s):  
Victor H.R. Menezes da Silva ◽  
Ciro A. Ávila ◽  
Reiner Neumann ◽  
Fabiano R.L. Faulstich ◽  
Felipe E.A. Alves ◽  
...  

Abstract Oxycalciomicrolite (IMA2019-110), (Ca,Na)2(Ta,Nb,Ti)2O6(O,F), is a new member of microlite-group mineral found in the saprolite of the weathered Fumal pegmatite, located close to the city of Nazareno, Minas Gerais state, Brazil. It occurs as an accessory mineral associated with quartz, albite, microcline, muscovite, columbite-subgroup minerals, cassiterite, hematite, ilmenite, monazite-(Ce), xenotime-(Y), zircon, beryl, spinel, epidote and garnet-group minerals. Oxycalciomicrolite is found as octahedral crystals, occasionally modified to rhombododecahedra, ranging from 0.2 to 0.5 mm in size. The crystals are brownish-yellow to brownish-red and translucent, with white streak and vitreous to resinous lustre. The tenacity is brittle, with a Mohs hardness of 5–5½. Cleavage and parting are not observed; the fracture is conchoidal. Electron microprobe analysis, Raman and infrared spectroscopies and X-ray powder diffraction were applied to characterise this mineral. Oxycalciomicrolite is isotropic, ncalc. = 2.037, and the calculated density is 6.333 g/cm3. The composition is (Ca1.57□0.26Na0.06Sn0.03Sr0.03U0.02Mn0.02Fe0.01Ce0.01)∑2.00(Ta1.79Nb0.18Ti0.03)∑2.00O6.00[O0.64F0.19□0.17]∑1.00 analysed by electron microprobe using wavelength dispersive spectrometry. The unit-cell parameters obtained by Pawley fitting from powder X-ray diffraction data are a = 10.4325(4) Å and V = 1135.46(14) Å3 with Z = 8.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


2020 ◽  
Vol 321 ◽  
pp. 04001
Author(s):  
L. Lavisse ◽  
A. Kanjer ◽  
K. Cheveau ◽  
V. Optasanu ◽  
P. Peyre ◽  
...  

The improvement of the high temperature oxidation resistance of titanium alloys is currently a technological challenge. Mechanical surface treatments as shot-peening (SP) have shown their ability to improve the behaviour of pure zirconium and titanium. However, shot-peening treatments can induce a significant surface contamination. Laser shock peening (LSP) appears as a good alternative. Here, we have investigated the effect of SP and LSP treatments on the HT oxidation behavior of Ti-β21S. Samples treated by these methods have been compared to untreated ones for long exposures (3000 h) at 700 °C in dry air. The samples placed in a furnace at 700 °C were periodically extracted to be weighed. The results have been compared to that of pure commercial titanium (Ti-α) samples studied in the same conditions. The higher performances of the Ti-β21S alloy, and the beneficial effect of the SP treatment, and even more of the LSP one, on the HT oxidation resistance of Ti-β21S have been clearly shown. The effect of the mechanical treatments on the microstructure of the Ti-β21S samples and the changes induced by the long duration exposure at high temperature have been mainly studied by scanning electron microscopy combined with energy and wavelength dispersive spectrometry.


2019 ◽  
Vol 25 (05) ◽  
pp. 1075-1105 ◽  
Author(s):  
Dale E. Newbury ◽  
Nicholas W.M. Ritchie

Abstract2018 marked the 50th anniversary of the introduction of energy dispersive X-ray spectrometry (EDS) with semiconductor detectors to electron-excited X-ray microanalysis. Initially useful for qualitative analysis, EDS has developed into a fully quantitative analytical tool that can match wavelength dispersive spectrometry for accuracy in the determination of major (mass concentration C > 0.1) and minor (0.01 ≤ C ≤ 0.1) constituents, and useful accuracy can extend well into the trace (0.001 < C < 0.01) constituent range even when severe peak interference occurs. Accurate analysis is possible for low atomic number elements (B, C, N, O, and F), and at low beam energy, which can optimize lateral and depth spatial resolution. By recording a full EDS spectrum at each picture element of a scan, comprehensive quantitative compositional mapping can also be performed.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 817
Author(s):  
Paweł Kochmański ◽  
Jolanta Baranowska ◽  
Sebastian Fryska

This paper presents the results of microstructural examinations on gas carbonitrided layers using scanning electron microscopy (SEM), wavelength dispersive spectrometry X-ray microanalysis (WDS), magnetic force microscopy (MFM), electron backscattered diffraction (EBSD), and X-ray diffraction. The main objective of the work is to discuss the microstructural and morphological changes occurring in the layers depending on the process parameter such as temperature and atmosphere composition. The carbonitrided layers comprise two sublayers: an outer layer enriched in nitrogen and an inner layer enriched in carbon. It is found that both the microstructure and the thickness depend on the technological parameters of the thermochemical treatment. The treatment temperature is particularly important, increasing both the total and the nitrogen-rich sublayer thickness regardless of the atmosphere type. The nitrogen potential has a positive influence on the thickness of the nitrogen-stabilised S-phase sublayer. Layers treated for 5 h at temperatures of 400 and 450 °C are composed of an internal carbon-enriched S-phase sublayer and an outer nitrogen-enriched S-phase sublayer that can be divided into ferromagnetic and paramagnetic zones. In the outer sublayer, symmetry distortion of the fcc crystal system is observed and stacking faults may have occurred. With layers produced at 500 °C for 5 h, the outer nitrogen-enriched sublayer contains fine precipitates of nitrides and carbides.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 327 ◽  
Author(s):  
Gleb V. Nesterenko ◽  
Sergey M. Zhmodik ◽  
Dmitriy K. Belyanin ◽  
Evgeniya V. Airiyants ◽  
Nikolay S. Karmanov

Micrometric inclusions in platinum-group minerals (PGMs) from alluvial placers carry considerable information about types of primary rocks and ores, as well as conditions of their formation and alteration. In the present contribution, we attempt to show, with concrete examples, the significance of the data on the composition and morphology of micrometric inclusions to genetic interpretations. The PGM grains from alluvial placers of the Gornaya Shoria region (Siberia, Russia) were used as the subject of our investigation. In order to determine the chemical composition of such ultrafine inclusions, high-resolution analytical methods are needed. We compare the results acquired by wavelength-dispersive spectrometry (WDS; electron microprobe) and energy-dispersive spectrometry (EDS) and scanning electron microscopy (SEM) methods. The results obtained have good convergence. The EDS method is multi-elemental and more effective for mineral diagnostics in comparison with WDS, which is its certain advantage. The possible conditions for the formation of inclusions and layers of gold, sulfoarsenides and arsenides in Pt3Fe grains, which have an original sub-graphic and layered texture pattern, are discussed. They are the result of solid solution and eutectic decompositions and are associated with the magmatic stages of grain transformation, including the result of the interaction of Pt3Fe with a sulfide melt enriched with Te and As.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 65 ◽  
Author(s):  
Sean Regan ◽  
Marian Lupulescu ◽  
Michael Jercinovic ◽  
Jeffrey Chiarenzelli ◽  
Michael Williams ◽  
...  

Monazite crystals, intergrown with allanite, fluorapatite, and quartz from the Cheever Mine iron oxide-apatite (IOA-type) deposit in Essex County, New York, USA, display rare symplectite textures. Electron probe wavelength-dispersive spectrometry (WDS) mapping and major and trace element characterization of these features reveal a natural experiment in fluid-mediated monazite recrystallization. Two types of monazite with symplectite intergrowths have been recognized (Type I and II). Both types of symplectite development are associated with a decrease in HREE, Si, Ca, Th, and Y, but an increase in both La and Ce in monazite. Electron microprobe Th-U-total Pb analysis of Type I monazite with suitable ThO2 concentrations yielded a weighted mean age of 980 ± 5.8 Ma (MSWD: 3.3), which is interpreted as the age of monazite formation and the onset of symplectite development. Both types of monazite formed during a series of reactions from fluorapatite, and possibly britholite, to produce the final assemblage of monazite, allanite, and fluorapatite. Monazite formation was likely a response to evolving fluid conditions, which favored monazite stability over fluorapatite at ca. 980 Ma, possibly a NaCl brine. A subsequent transition to a Ca-dominated fluid may have then promoted the consumption of monazite to produce another generation of allanite and fluorapatite. Our results indicate that recrystallized monazite formed during fluid-mediated processes that, over time, trended towards an increasingly pure end-member composition. Regionally, these data are consistent with a magmatic-origin followed by fluid-mediated remobilization of select phases at subsolidus conditions for the Adirondack IOA deposits.


Sign in / Sign up

Export Citation Format

Share Document