viral reverse transcriptases
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Sanchita Bhadra ◽  
Andre C. Maranhao ◽  
Andrew D. Ellington

ABSTRACTGiven the scale of the ongoing COVID-19 pandemic, the need for reliable, scalable testing, and the likelihood of reagent shortages, especially in resource-poor settings, we have developed a RT-qPCR assay that relies on an alternative to conventional viral reverse transcriptases, a thermostable reverse transcriptase / DNA polymerase (RTX)1. Here we show that RTX performs comparably to the other assays sanctioned by the CDC and validated in kit format. We demonstrate two modes of RTX use – (i) dye-based RT-qPCR assays that require only RTX polymerase, and (ii) TaqMan RT-qPCR assays that use a combination of RTX and Taq DNA polymerases (as the RTX exonuclease does not degrade a TaqMan probe). We also provide straightforward recipes for the purification of this alternative reagent. We anticipate that in low resource or point-of-need settings researchers could obtain the available constructs from Addgene or our lab and begin to develop their own assays, within whatever regulatory framework exists for them.We lay out protocols for dye-based and TaqMan probe-based assays, in order to best compare with ‘gold standard’ reagents. These protocols should form the basis of further modifications that can simplify the assay to the use of overexpressing cells themselves as reagents.Developing dye-based and TaqMan probe-based RT-qPCR assays with RTX


2019 ◽  
Vol 26 (31) ◽  
pp. 5849-5861 ◽  
Author(s):  
Pan Jiang ◽  
Feng Yan

tiRNAs & tRFs are a class of small molecular noncoding tRNA derived from precise processing of mature or precursor tRNAs. Most tiRNAs & tRFs described originate from nucleus-encoded tRNAs, and only a few tiRNAs and tRFs have been reported. They have been suggested to play important roles in inhibiting protein synthesis, regulating gene expression, priming viral reverse transcriptases, and the modulation of DNA damage responses. However, the regulatory mechanisms and potential function of tiRNAs & tRFs remain poorly understood. This review aims to describe tiRNAs & tRFs, including their structure, biological functions and subcellular localization. The regulatory roles of tiRNAs & tRFs in translation, neurodegeneration, metabolic diseases, viral infections, and carcinogenesis are also discussed in detail. Finally, the potential applications of these noncoding tRNAs as biomarkers and gene regulators in different diseases is also highlighted.


2017 ◽  
Vol 234 ◽  
pp. 153-176 ◽  
Author(s):  
Luis Menéndez-Arias ◽  
Alba Sebastián-Martín ◽  
Mar Álvarez

2004 ◽  
Vol 85 (8) ◽  
pp. 2389-2395 ◽  
Author(s):  
Jiayou Zhang

The rate of mutation during retrovirus replication is high. Mutations can occur during transcription of the viral genomic RNA from the integrated provirus or during reverse transcription from viral RNA to form viral DNA or during replication of the proviral DNA as the host cell is dividing. Therefore, three polymerases may all contribute to retroviral evolution: host RNA polymerase II, viral reverse transcriptases and host DNA polymerases, respectively. Since the rate of mutation for host DNA polymerase is very low, mutations are more likely to be caused by the host RNA polymerase II and/or the viral reverse transcriptase. A system was established to detect the frequency of frame-shift mutations caused by cellular RNA polymerase II, as well as the rate of retroviral mutation during a single cycle of replication in vivo. In this study, it was determined that RNA polymerase II contributes less than 3 % to frame-shift mutations that occur during retrovirus replication. Therefore, the majority of frame-shift mutations detected within the viral genome are the result of errors during reverse transcription.


FEBS Letters ◽  
1991 ◽  
Vol 287 (1-2) ◽  
pp. 1-4 ◽  
Author(s):  
Jean-Michel Mesnard ◽  
Geneviéve Lebeurier

1980 ◽  
Vol 35 (2) ◽  
pp. 555-559 ◽  
Author(s):  
M G Sarngadharan ◽  
V S Kalyanaraman ◽  
R Rahman ◽  
R C Gallo

Sign in / Sign up

Export Citation Format

Share Document