Numerical Study of Supersonic Film Cooling in Diverging Section of Nuclear Rocket Laval Nozzle

Author(s):  
Xiaokai Sun ◽  
Ping Ye ◽  
Peixue Jiang ◽  
Wei Peng ◽  
Jie Wang

Nuclear rockets with specific impulse have obvious advantages by greatly reducing the mass of the propellant and potentially decreasing the cost of launching material from the earth’s surface. Nuclear thermal rockets use hydrogen propellant with coolant exit temperature of near 3000 K, which is very high, so the cooling of airframe surfaces in the vicinity of the exhaust is needed, of which film cooling is an effective method. Most of previous studies mainly focus on the film cooling effectiveness using two dimensional backward-facing step model, however, the nuclear rocket exhaust using the converging-diverging Laval nozzle, so the film cooling would be different. The present study numerically investigated the influence of coolant Mach number, coolant inlet height on supersonic film cooling in the diverging section of Laval nozzle, while keeping the coolant mass flow rate constant, with the results showing that: increasing the coolant inlet Mach number and the coolant inlet height can increase the film cooling effectiveness; for the same coolant mass flow rate, reducing the coolant inlet height and increasing the inlet Mach number improves film cooling effectiveness.

Author(s):  
Chen Li ◽  
Jian-jun Liu

The turbine blade cooling design is a complex procedure including one-dimensional preliminary cooling design, detailed two-dimensional design and fluid network analyses, and three-dimensional conjugate heat transfer and FEM predictions. Frequent alteration and modification of the cooling configurations make it unpractical to obtain all of three-dimensional design results quickly. Preliminary cooling design deals mainly with the coolant requirements and can be knitted into fluid network to look up the expected cooling structural style to promote three-dimensional geometry design. Previous methods to estimate the coolant requirements of the whole turbine blade in the preliminary cooling design were usually based on the semi-empirical air-cooled blade data. This paper combines turbine blade internal and external cooling, and presents a one-dimensional theoretical analytical method to investigate blade cooling performance, assuming that the coolant temperature increases along the blade span. Firstly, a function of non-dimensional cooling mass flow rate is derived to describe the new relationship between adiabatic film cooling effectiveness and overall cooling effectiveness. Secondly, a new variable related to film cooling is found to estimate the required adiabatic film cooling effectiveness without using the empirical correlations. Finally, a theoretical calculation about the relationship between non-dimensional cooling mass flow rate and overall cooling effectiveness well corresponds to semi-empirical air-cooled blade data within regular range of cooling efficiency. The currently proposed method is also a useful tool for the blade thermal analysis and the sensitivity analysis of coolant requirements to various design parameters. It not only can provide all the possible options at the given gas and coolant inlet temperatures to meet the design requirement, but also can give the third boundary conditions for calculating the blade temperature field. It’s convenient to use the heat transfer characteristic of internal cooling structures to estimate the coolant mass flow rate and the channel hydraulic diameter for both convection cooling and film cooling.


Author(s):  
Dong-Ho Rhee ◽  
Young Seok Kang ◽  
Bong Jun Cha ◽  
Jeong-Seek Kang ◽  
Sanga Lee ◽  
...  

In the present study, the optimized configurations of film cooled turbine guide vanes proposed in Part I were validated experimentally and the effect of coolant mass flow rate on the performance was examined for those optimized configurations. A set of tests were conducted using an annular sector transonic turbine cascade test facility in Korea Aerospace Research Institute. The mainstream and the secondary air for cooling are supplied by 500 hp and 50 hp compressors, respectively, and the mainstream was heated approximately 20°C above the secondary flow by 300kW heater. To measure the film cooling effectiveness on the pressure side surface, the transient measurement method was used using a FLIR infrared camera system. The test section has five nozzle guide vanes with four passages. The three times scaled-up vane model is manufactured by a stereolithography method. The tests were conducted at mainstream exit Reynolds number based on the chord of 2.2×106 and the coolant mass flow rate ranging from 5 to 13% of the mainstream. The flow periodicity in the cascade passage was verified by surface static pressure measurements. The results showed that the optimized cases present better cooling effectiveness values in the overall region. The effect of coolant mass flow rate also presents the same trend. Comparison with the CFD results shows that the CFD results over-predict film cooling effectiveness by 10∼20 percentage points for baseline and 17∼23 percentage points for the optimized cases. This is probably partly due to the discrepancy of operating conditions such as inlet boundary condition and density ratio and partly due to the limitation of numerical method used in the optimization such as coarse grid near the surface. However, a quite good agreement is obtained qualitatively, which means the optimization process can be utilized as a reliable and efficient method for film cooling performance improvement.


Author(s):  
Zhong-yi Fu ◽  
Hui-ren Zhu ◽  
Cun-liang Liu ◽  
Cong Liu ◽  
Zheng Li

This paper experimentally investigates the film cooling performance of an enlarged turbine guide vane with full-coverage cylindrical hole film cooling in short duration transonic wind tunnel which can model realistic engine aerodynamic conditions and adjust inlet Reynolds number and isentropic exit Mach number independently. The effects of mass flow rate ratio (MFR=4.83%∼8.83%), inlet Reynolds number (Rein= 1.7×105∼5.7×105), and isentropic exit Mach number (Mais=0.81∼1.01) are investigated. There are five rows of cylindrical film cooling holes on the pressure side and four such rows on the suction side respectively. Another four rows of cylindrical holes are provided on the leading edge to obtain a showerhead film cooling. The surface heat transfer coefficient and adiabatic film cooling effectiveness are derived from the surface temperatures measured by the thermocouples mounted in the middle span of the vane surface based on transient heat transfer measurement method. Mass flow rate ratio is shown to have a significant effect on film cooling effectiveness. The increase of mass flow rate ratio increases film cooling effectiveness on pressure side, while increasing this factor has opposite effect on film cooling effectiveness on the suction side. At the same mass flow rate ratio, increasing the Reynolds number can enhance the film cooling performance, the expectation is that at low mass flow rate ratio condition increasing the Reynolds number decreases film cooling effectiveness on the pressure side. The heat transfer coefficient increases with the mass flow rate ratio increasing on both pressure and suction side. At middle and high inlet Reynolds number condition, in the region of 0.4<s<0.6 on suction side, the coolant weakens heat transfer adversely.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Qaiser Sultan ◽  
Gildas Lalizel ◽  
Matthieu Fénot ◽  
Eva Dorignac

This study investigates the effects of sinusoidal pulsations externally imposed to an oblique round jet. The effectiveness of film coverage of an adiabatic wall onset for a thermally uniform bulk flow is presented in the perspective of gas turbine film cooling. For the injectant fluid, both the temperature and the mass flow rate are controlled prior to entrance to the periodic forcing system using a loudspeaker drive. The characteristic film cooling parameters including the blowing ratios and the temperature ratio are maintained at M=ρiUi/ρ∞U∞ = 0.65, 1, and 1.25, and Ti/T∞=2 respectively. The injection fluid is pulsated to a nondimensionalized frequency of St=f⋅d/U = 0, 0.2, 0.3, and 0.5. In the present investigation, the impact of injectant film modulation is figured out by analyzing the velocity fields measured by a system of time-resolved particle image velocimetry (TR-PIV), as well as analyzing the adiabatic wall temperature and the convective heat transfer coefficient measured by a system of infrared thermography. The overall film-cooling effectiveness is revealed by the time-averaged analysis, in which altered time-averaged jet trajectories and wake behavior are focused. It is observed that the pulsations tend to result in lower effectiveness when the flow remained attached to the wall in steady blowing case. In steady blowing cases with jet liftoff, such as for M= 1.25, rendering low-frequency pulsation helps in increasing film-cooling effectiveness due to the discharge of lower mass flow rate coolant during the significant time interval of the respective pulse cycle.


Author(s):  
Ruiqin Wang ◽  
Xin Yan

Abstract To cool a high-pressure gas turbine blade, many rows of cooling holes with different arrangements and configurations are manufactured to achieve higher cooling effect and lower aerodynamic loss. To evaluate the heat transfer and film cooling effect in the full-cooled turbine blade, efficient numerical simulations are required in the design and performance optimization processes. From the view of numerical accuracy, the structured grids have to be employed because of higher resolution in flow and heat transfer than the unstructured grids. Because many splitting, attaching and merging manipulations are involved in meshing the cooling features and curved boundaries, it is very complex and time-consuming for a researcher to generate multi-block structured grids for a full-cooled gas turbine blade. As a result, in the industrial applications, almost all researchers preferred to generate unstructured grids instead of structured grids for the full-cooled blade. Unlike the previous research, the aim of this study is to apply the Background-Grid Based Mapping (BGBM) method proposed in Part I to generate multi-block structured grids for a full-cooled gas turbine vane. With the strategy of BGBM method, meshes were conveniently generated in the computational space with simple geometrical features and plain interfaces, and then were mapped back into physical space to obtain the multi-block structured grids which can be used for numerical simulations. With the experimental data, the present numerical methods and BGBM strategy were carefully validated. Then, the flow and film cooling performance in the full-cooled NASA GE-E3 nozzle guided vane were numerically investigated. The effects of coolant mass flow rate and land extensions on film cooling effectiveness were discussed. The results show that film cooling effectiveness near the stagnation point is the lowest and film cooling effectiveness on the pressure side is slightly higher than that on the suction side. When the coolant mass flow rate increases up to the value of 1.5 design flow, the relative outflow mass flow rates of cooling hole arrays and slots are no longer affected by the increase of the coolant flow rate. At half design flow, the outflow mass flow rates of No.5 hole-array to No.10 hole-array are almost zero, and the area-averaged film cooling effectiveness on vane surface is as low as 0.268. Compared with the cases of half design flow and double design flow, better film cooling performance is obtained in the cases of design flow and 1.5 design flow. Compared with the vane without lands, the area-average cooling effectiveness on vane surface is slightly higher for the vane with lands. Land extensions have a considerable influence on film cooling performance in the cutback region.


Author(s):  
Xiang Zhang ◽  
Zhong Yang ◽  
Shuqing Tian ◽  
Haiteng Ma

Detailed numerical investigations of film cooling effectiveness are conducted for the holes on the tip cavity floor and near the tip pressure side. The tested blade tip is a squealer with the trailing rim wall cut to allow the accumulated coolant in the cavity to escape and cool the trailing edge. The heat transfer coefficients on the un-cooled flat and cutback squealer blade tip are studied with numerical and experimental methods. Three dust purging holes with different diameters are arranged along the camber line, which forms the basic cooled case (PG case). Additional six tip cavity holes are arranged on cavity floor near the suction side rim (PG-TF case). Another row of angled twenty-one holes is arranged along the pressure side just below the tip based on the PG case (PG-PSF case). The coolant supply pressure ratios are controlled to be 1, 1.11, and 1.22 respectively, offering local blowing ratio from 0 to 2.5. Results show that the dust purging flow cooling performance increases with the cavity depth. Discrete holes on the cavity floor offer a well-distributed coolant, which refines the cooling effect on the cavity floor. The PG-PSF case with cooling holes on the pressure side has the best overall cooling performance with more coolant consumed, when PR ≥ 1.22. However, maintaining the same coolant mass flow the PG-TF case has the best cooling performance, and the margin between PG-TF and PG-PSF case decreases with mass flow. The moving shroud cases reveal that blade movement will cause significant negative impacts on film cooling effectiveness.


Author(s):  
D. Proietti ◽  
A. Pranzitelli ◽  
G. E. Andrews ◽  
M. E. Biancolini ◽  
D. B. Ingham ◽  
...  

A Computational Fluid Dynamics (CFD) optimisation of a single row of film cooling holes was performed. The aim was to achieve the highest adiabatic cooling effectiveness while minimising the coolant mass flow rate. The geometry investigated by Gritsch et al. [1] was the baseline model. It consisted of a row of cylindrical, 30° inclined holes, with a mainstream inlet Mach number of 0.6, a blowing ratio of 1 and a plenum for the upstream cooling air flow. The predictions agreed with the experimental data with a maximum deviation of 6%. The geometry was then optimised by varying three shape parameters: the injection angle, the lateral hole expansion angle and the downstream compound hole angle. A goal driven optimisation approach was based on a design of experiments table. The minimisation of the coolant mass flow together with the maximisation of the minimum and average cooling effectiveness were the optimisation objectives. The shape modifications were performed directly in the ANSYS Fluent CFD solver by using the software RBF Morph in the commercial software platform ANSYS Workbench. There was no need to generate a new geometry and a new computational mesh for each configuration investigated. The dependency of the average effectiveness along the plane centreline on the three geometrical parameters was investigated based on the metamodel generated from the design of experiments results. The goal driven optimisation led to the optimal combination of the three shape parameters to minimise the coolant flow without reducing the cooling effectiveness. The best results were obtained for a geometry with 20° hole angle and 7.5° compound angle injection, leading to a reduction of 15% in the coolant mass flow rate for an enhanced adiabatic cooling effectiveness. The results also showed the preponderance of the centreline angle over the other two parameters.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Fu-qiang Wang ◽  
Jian Pu ◽  
Jian-hua Wang ◽  
Wei-dong Xia

Abstract Film-hole can be often blocked by thermal-barrier coatings (TBCs) spraying, resulting in the variations of aerodynamic and thermal performances of film cooling. In this study, a numerical study of the blockage effect on the film cooling effectiveness of inclined cylindrical-holes was carried out on a concave surface to simulate the airfoil pressure side. Three typical blowing ratios (BRs) of 0.5, 1.0, and 1.5 were chosen at an engine-similar density ratio (DR) of 2.0. Two common inclination angles of 30 deg and 45 deg were designed. The blockage ratios were adjusted from 0 to 20%. The results indicated the blockage could enhance the penetration of film cooling flow to the mainstream. Thus, the averaged effectiveness and coolant coverage area were reduced. Moreover, the pressure loss inside of the hole was increased. With the increase of BR, the decrement of film cooling effectiveness caused by blockage rapidly increased. At BR = 1.5, the decrement could be acquired up to 70% for a blockage ratio of 20%. The decrement of film cooling effectiveness caused by blockage was nearly nonsensitive to the injection angle; however, the larger angle could generate the higher increment of pressure loss caused by blockage. A new design method for the couple scheme of film cooling and TBC was proposed, i.e., increasing the inlet diameter according to the blockage ratio before TBC spraying. In comparison with the original unblocked-hole, the enlarged blocked-hole not only kept the nearly same area-averaged effectiveness but also reduced slightly the pressure loss inside of the hole. Unfortunately, application of enlarged blocked-hole at large BR could lead to a more obvious reduction of effectiveness near hole-exit, in comparison with the original common-hole.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


Sign in / Sign up

Export Citation Format

Share Document