intragenomic variation
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Alexander L Cope ◽  
Premal Shah

Patterns of non-uniform usage of synonymous codons (codon bias) varies across genes in an organism and across species from all domains of life. The bias in codon usage is due to a combination of both non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most population genetics models quantify the effects of mutation bias and selection on shaping codon usage patterns assuming a uniform mutation bias across the genome. However, mutation biases can vary both along and across chromosomes due to processes such as biased gene conversion, potentially obfuscating signals of translational selection. Moreover, estimates of variation in genomic mutation biases are often lacking for non-model organisms. Here, we combine an unsupervised learning method with a population genetics model of synonymous codon bias evolution to assess the impact of intragenomic variation in mutation bias on the strength and direction of natural selection on synonymous codon usage across 49 Saccharomycotina budding yeasts. We find that in the absence of a priori information, unsupervised learning approaches can be used to identify regions evolving under different mutation biases. We find that the impact of intragenomic variation in mutation bias varies widely, even among closely-related species. We show that the overall strength and direction of selection on codon usage can be underestimated by failing to account for intragenomic variation in mutation biases. Interestingly, genes falling into clusters identified by machine learning are also often physically clustered across chromosomes, consistent with processes such as biased gene conversion. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable mutation biases on codon frequencies.



2021 ◽  
Vol 7 (9) ◽  
pp. 767
Author(s):  
Soumitra Paloi ◽  
Wuttichai Mhuantong ◽  
Janet Jennifer Luangsa-ard ◽  
Noppol Kobmoo

While recent sequencing technologies (third generation sequencing) can successfully sequence all copies of nuclear ribosomal DNA (rDNA) markers present within a genome and offer insights into the intragenomic variation of these markers, high intragenomic variation can be a source of confusion for high-throughput species identification using such technologies. High-throughput (HT) amplicon sequencing via PacBio SEQUEL I was used to evaluate the intragenomic variation of the ITS region and D1–D2 LSU domains in nine Cordyceps species, and the accuracy of such technology to identify these species based on molecular phylogenies was also assessed. PacBio sequences within strains showed variable level of intragenomic variation among the studied Cordyceps species with C. blackwelliae showing greater variation than the others. Some variants from a mix of species clustered together outside their respective species of origin, indicative of intragenomic variation that escaped concerted evolution shared between species. Proper selection of consensus sequences from HT amplicon sequencing is a challenge for interpretation of correct species identification. PacBio consensus sequences with the highest number of reads represent the major variants within a genome and gave the best results in terms of species identification.



PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253173
Author(s):  
Shobhna Mishra ◽  
Gunjan Sharma ◽  
Manoj K. Das ◽  
Veena Pande ◽  
Om P. Singh

Second Internal Transcribed Spacer (ITS2) ribosomal DNA (rDNA) sequence is a widely used molecular marker for species-identification or -delimitation due to observed concerted evolution which is believed to homogenize rDNA copies in an interbreeding population. However, intra-specific differences in ITS2 of Anopheles stephensi have been reported. This study reports the presence of intragenomic sequence variation in the ITS2-rDNA of An. stephensi and hypothesizes that observed intra-specific differences in this species may have resulted due to ambiguous DNA sequence-chromatogram resulting from intragenomic heterogeneity. Anopheles stephensi collected from different parts of India were sequenced for complete ITS2 and the variable region of 28S-rDNA (d1-d3 domains). Intragenomic variations were found in ITS2 region of all An. stephensi sequenced, but no such variation was observed in d1 to d3 domains of 28S-rDNA. Cloning and sequencing of ITS2 through the d3 domain of the 28S region of rDNA from representative samples from northern, central, and southern India confirmed the presence of intragenomic variation in ITS2 due to transitions at three loci and two bp indel in a di-nucleotide microsatellite locus. Multiple haplotypes were observed in ITS2 raised from such variations. Due to the absence of detectable intragenomic sequence variation in the d1 to d3 domain of 28S rDNA of An. stephensi, this region can serve as an ideal reference sequence for taxonomic and phylogenetic studies. The presence of intragenomic variation in rDNA should be carefully examined before using this as a molecular marker for species delimitation or phylogenetic analyses.



2021 ◽  
Author(s):  
Shobhna Mishra ◽  
Gunjan Sharma ◽  
Manoj K Das ◽  
Veena Pande ◽  
Om P Singh

Second Internal Transcribed Spacer (ITS2) ribosomal DNA (rDNA) sequence is a widely used molecular marker for the species-identification or -delimitation due to observed concerted evolution which is believed to homogenize rDNA copies in an interbreeding population. However, intra-specific differences in ITS2 of Anopheles stephensi have been reported. This study reports the presence of intragenomic variation in the ITS2 region of An. stephensi and hypothesized that observed intra-specific differences in this species may have been resulted due to ambiguous DNA-chromatogram resulting from intragenomic heterogeneity. Anopheles stephensi collected from different parts of India were sequenced for complete ITS2 and the variable region of 28S rDNA (d1-d3 domains). Intragenomic variations at fixed loci were found in ITS2 of all An. stephensi sequenced, but no such variation was observed in d1 to d3 domains of 28S rDNA. Cloning and sequencing of ITS2 through the d3 domain of the 28S region of rDNA from representative samples from northern, central and southern India confirmed the presence of intragenomic variation in ITS2. The variations are due to three transitions and two bp indel in a di-nucleotide microsatellite locus at fixed loci. Multiple haplotypes were observed in ITS2 raised from such variations. Due to the absence of detectable intragenomic sequence variation in the d1 to d3 domain of 28S rDNA of An. stephensi, this region can serve as an ideal reference sequence for taxonomic and phylogenetic studies. The presence of intragenomic variation in rDNA should be carefully examined before using this as a molecular marker for species delimitation or phylogenetic analyses.



2021 ◽  
Vol 4 ◽  
Author(s):  
Holly Bik

Microbial metazoans (e.g. nematodes, copepods, tardigrades and other 'minor' animal phyla < 1mm in size) are ubiquitous and abundant across most ecosystems on earth. In marine sediment habitats, microbial metazoa exhibit high biodiversity but suffer from poor taxonomy and an ongoing lack of reference DNA sequences in public databases. Environmental DNA metabarcoding thus represents an increasingly critical tool for rapidly assessing the global biodiversity and phylogeographic patterns of such neglected metazoan groups. However, there are significant bioinformatics hurdles facing the study of microbial eukaryotes. Most software pipelines and databases have been designed and optimized for smaller (e.g. bacteria/archaea) or larger (e.g. vertebrate) taxa, and emphasize "standard" metabarcoding loci such as COI which are not useful for groups such as nematodes which lack universal COI primer binding regions. In addition, the sparsity of public reference barcodes for microbial metazoa often precludes accurate taxonomy assignments for unknown MOTUs in metabarcoding datasets. Here, I will present recent work focused on the refinement of bionformatics workflows for microbial metazoan groups, including efforts to account for intragenomic variation observed in rRNA loci, discrepancies in results across OTU vs. ASV generation pipelines, and biases in sequence-based taxonomhy assignment methods.







2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Michael Bradshaw ◽  
Felix Grewe ◽  
Anne Thomas ◽  
Cody H. Harrison ◽  
Hanna Lindgren ◽  
...  

Abstract Background Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing. Results We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of this complex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic inferences based on the ITS, 28S, intergenic spacer region, and some intronic regions, independently; however, a phylogenetic inference based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed previously unrecognized lineages in the nrDNA phylogeny. Conclusions The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited amount of potential intragenomic variability in the ITS region did not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution in the R. melanophthalma species complex.



2019 ◽  
Author(s):  
Michael Bradshaw ◽  
Felix Grewe ◽  
Anne Thomas ◽  
Cody H. Harrison ◽  
Hanna Lindgren ◽  
...  

Abstract Background: Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing. Results: We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of thiscomplex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic inferences based on the ITS, 28S, intergenic spacer region, and some intronic regions, independently; however, a phylogenetic inference based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed previously unrecognized lineages in the nrDNA phylogeny. Conclusions: The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited amount of potential intragenomic variability in the ITS region did not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution in the R. melanophthalma species complex.



Sign in / Sign up

Export Citation Format

Share Document