force field adaptation
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Nick M. Kitchen ◽  
R. Chris Miall

AbstractHealthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.



Author(s):  
Nick M. Kitchen ◽  
R Chris Miall

AbstractHealthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.



2020 ◽  
Author(s):  
Yang Liu ◽  
Hannah J. Block

AbstractMotor skill learning involves both sensorimotor adaptation (calibrating the response to task dynamics and kinematics), and sequence learning (executing the task elements in the correct order at the necessary speed). These processes typically occur together in natural behavior and share much in common, such as working memory demands, development, and possibly neural substrates. However, sensorimotor and sequence learning are usually studied in isolation in research settings, for example as force field adaptation or serial reaction time tasks (SRTT), respectively. It is therefore unclear whether having predictive sequence information during sensorimotor adaptation would facilitate performance, perhaps by improving sensorimotor planning, or if it would impair performance, perhaps by occupying neural resources needed for sensorimotor learning. Here we evaluated adaptation to a distance-dependent force field in two different SRTT contexts: In Experiment 1, 28 subjects reached between 4 targets in a sequenced or random order. In Experiment 2, 40 subjects reached to one target, but 3 force field directions were applied in a sequenced or random order. We did not observe any consistent influence of target position sequence on force field adaptation in Experiment 1. However, sequencing of force field directions facilitated sensorimotor adaptation and retention in Experiment 2. This is inconsistent with the idea that sensorimotor and sequence learning share neural resources in any mutually exclusive fashion. These findings indicate that under certain conditions, perhaps especially when the sequence is related to the sensorimotor perturbation itself as in Experiment 2, sequence learning may interact with sensorimotor learning in a facilitatory manner.



2020 ◽  
Vol 123 (4) ◽  
pp. 1552-1565 ◽  
Author(s):  
Raphael Schween ◽  
Samuel D. McDougle ◽  
Mathias Hegele ◽  
Jordan A. Taylor

While the contribution of explicit learning has been increasingly studied in visuomotor adaptation, its contribution to force field adaptation has not been studied extensively. We employed two novel methods to assay explicit learning in a force field adaptation task and found that learners can voluntarily control aspects of compensatory force production and manually report it with their untrained limb. This supports the general viability of the contribution of explicit learning also in force field adaptation.



2019 ◽  
Vol 122 (5) ◽  
pp. 2027-2042 ◽  
Author(s):  
Laith Alhussein ◽  
Eghbal A. Hosseini ◽  
Katrina P. Nguyen ◽  
Maurice A. Smith ◽  
Wilsaan M. Joiner

Extensive computational and neurobiological work has focused on how the training schedule, i.e., the duration and rate at which an environmental disturbance is presented, shapes the formation of motor memories. If long-lasting benefits are to be derived from motor training, however, retention of the performance improvements gained during practice is essential. Thus a better understanding of mechanisms that promote retention could lead to the design of more effective training procedures. The few studies that have investigated how retention depends on the training schedule have suggested that the gradual exposure of a perturbation leads to improved retention of motor memory compared with an abrupt exposure. However, several of these previous studies showed small effects, and although some controlled the training duration and others the level of learning, none have controlled both. In the present study we disambiguated both of these effects from exposure rate by systematically varying the duration of training, type of trained dynamics, and exposure rate for these dynamics in human force-field adaptation. After controlling for both training duration and the amount of learning, we found essentially identical retention when comparing gradual and abrupt training for two different types of force-field dynamics. By contrast, we found that retention was markedly higher for long-duration compared with short-duration training for both types of dynamics. These results demonstrate that the duration of training has a far greater effect on the retention of motor memory than the exposure rate during training. We show that a multirate learning model provides a computational mechanism for these findings. NEW & NOTEWORTHY Previous studies have suggested that a gradual, incremental introduction of a novel environment is helpful for improving retention. However, we used experimental and computational approaches to demonstrate that previously reported improvements in retention associated with gradual introductions fail to persist when other factors, including the duration of training and the degree of initial learning, are accounted for.



2019 ◽  
Vol 122 (3) ◽  
pp. 933-946 ◽  
Author(s):  
Katrina P. Nguyen ◽  
Weiwei Zhou ◽  
Erin McKenna ◽  
Katrina Colucci-Chang ◽  
Laurence C. Jayet Bray ◽  
...  

Humans rapidly adapt reaching movements in response to perturbations (e.g., manipulations of movement dynamics or visual feedback). Following a break, when reexposed to the same perturbation, subjects demonstrate savings, a faster learning rate compared with the time course of initial training. Although this has been well studied, there are open questions on the extent early savings reflects the rapid recall of previous performance. To address this question, we examined how the properties of initial training (duration and final adaptive state) influence initial single-trial adaptation to force-field perturbations when training sessions were separated by 24 h. There were two main groups that were distinct based on the presence or absence of a washout period at the end of day 1 (with washout vs. without washout). We also varied the training duration on day 1 (15, 30, 90, or 160 training trials), resulting in 8 subgroups of subjects. We show that single-trial adaptation on day 2 scaled with training duration, even for similar asymptotic levels of learning on day 1 of training. Interestingly, the temporal force profile following the first perturbation on day 2 matched that at the end of day 1 for the longest training duration group that did not complete the washout. This correspondence persisted but was significantly lower for shorter training durations and the washout subject groups. Collectively, the results suggest that the adaptation observed very early in reexposure results from the rapid recall of the previously learned motor recalibration but is highly dependent on the initial training duration and final adaptive state. NEW & NOTEWORTHY The extent initial readaptation reflects the recall of previous motor performance is largely unknown. We examined early single-trial force-field adaptation on the second day of training and distinguished initial retention from recall. We found that the single-trial adaptation following the 24-h break matched that at the end of the first day, but this recall was modified by the training duration and final level of learning on the first day of training.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Brandon M. Sexton ◽  
Yang Liu ◽  
Hannah J. Block


2019 ◽  
Author(s):  
Raphael Schween ◽  
Samuel D. McDougle ◽  
Mathias Hegele ◽  
Jordan A. Taylor

AbstractIn recent years, it has become increasingly clear that a number of learning processes are at play in visuomotor adaptation tasks. In addition to the presumed formation of an internal model of the perturbation, learners can also develop explicit knowledge allowing them to select better actions in responding to a given perturbation. Advances in visuomotor rotation experiments have underscored the important role that such “explicit learning” plays in shaping adaptation to kinematic perturbations. Yet, in adaptation to dynamic perturbations, its contribution has been largely overlooked, potentially because compensation of a viscous force field, for instance, is difficult to assess by commonly-used verbalization-based approaches. We therefore sought to assess the contribution of explicit learning in learners adapting to a dynamic perturbation by two novel modifications of a force field experiment. First, via an elimination approach, we asked learners to abandon any cognitive strategy before selected force channel trials to expose consciously accessible parts of overall learning. Learners indeed reduced compensatory force compared to standard Catch channels. Second, via a manual reporting approach, we instructed a group of learners to mimic their right hand’s adaptation by moving with their naïve left hand. While a control group displayed negligible left-hand force compensation, the Mimic group reported forces that approximated right-hand adaptation but appeared to under-report the velocity component of the force field in favor of a more position-based component. We take these results to clearly demonstrate the contribution of explicit learning to force adaptation, underscoring its relevance to motor learning in general.New & NoteworthyWhile the role of explicit learning has recently been appreciated in visuomotor adaptation tasks, their contribution to force field adaptation has not been as widely acknowledged. To address this issue, we employed two novel methods to assay explicit learning in force field adaptation tasks and found that learners can voluntarily control aspects of force production and manually report them with their untrained limb. This suggests that an explicit component contributes to force field adaptation and may provide alternative explanations to behavioral phenomena commonly thought to reveal a complex organization of internal models in the brain.



Sign in / Sign up

Export Citation Format

Share Document