scholarly journals Modeling the Combined Effect of Salt Precipitation and Fines Migration on CO2 Injectivity Changes in Sandstone Formation

2021 ◽  
Vol 2 (2) ◽  
pp. 55
Author(s):  
M Nabil Ziaudin Ahamed ◽  
Muhammad Azfar Mohamed ◽  
M Aslam Md Yusof ◽  
Iqmal Irshad ◽  
Nur Asyraf Md Akhir ◽  
...  

Carbon dioxide, CO2 emissions have risen precipitously over the last century, wreaking havoc on the atmosphere. Carbon Capture and Sequestration (CCS) techniques are being used to inject as much CO2 as possible and meet emission reduction targets with the fewest number of wells possible for economic reasons. However, CO2 injectivity is being reduced in sandstone formations due to significant CO2-brine-rock interactions in the form of salt precipitation and fines migration. The purpose of this project is to develop a regression model using linear regression and neural networks to correlate the combined effect of fines migration and salt precipitation on CO2 injectivity as a function of injection flow rates, brine salinities, particle sizes, and particle concentrations. Statistical analysis demonstrates that the neural network model has a reliable fit of 0.9882 in R Square and could be used to accurately predict the permeability changes expected during CO2 injection in sandstones.

2021 ◽  
Author(s):  
Muhammad Aslam Md Yusof ◽  
Mohamad Arif Ibrahim ◽  
Muhammad Azfar Mohamed ◽  
Nur Asyraf Md Akhir ◽  
Ismail M Saaid ◽  
...  

Abstract Recent studies indicated that reactive interactions between carbon dioxide (CO2), brine, and rock during CO2 sequestration can cause salt precipitation and fines migration. These mechanisms can severely impair the permeability of sandstone which directly affect the injectivity of supercritical CO2 (scCO2). Previous CO2 injectivity change models are ascribed by porosity change due to salt precipitation without considering the alteration contributed by the migration of particles. Therefore, this paper presents the application of response surface methodology to predict the CO2 injectivity change resulting from the combination of salt precipitation and fines migration. The impacts of independent and combined interactions between CO2, brine, and rock parameters were also evaluated by injecting scCO2 into brine saturated sandstone. The core samples were saturated with NaCl brine with salinity between 6,000 ppm to 100,000 ppm. The 0.1, 0.3, and 0.5 wt.% of different-sized hydrophilic silicon dioxide particles (0.005, 0.015, and 0.060 μm) were added to evaluate the effect of fines migration on CO2 injectivity alteration. The pressure drop profiles were recorded throughout the injection process and the CO2 injectivity alteration was represented by the ratio between the initial and final injectivity. The experimental results showed that brine salinity has a greater individual influence on permeability reduction as compared to the influence of particles (jamming ratio and particle concentration) and scCO2 injection flow rate. Moreover, the presence of both fines migration and salt precipitation during CO2 injection was also found to intensify the permeability reduction by 10%, and reaching up to threefold with increasing brine salinity and particle size. The most significant reductions in permeability were observed at higher brine salinities, as more salts are being precipitated out which, in turn, reduces the available pore spaces and leads to a higher jamming ratio. Thus, more particles were blocked and plugged especially at the slimmer pore throats. Based on comprehensive 45 core flooding experimental data, the newly developed model was able to capture a precise correlation between four input variables (brine salinity, injection flow rate, jamming ratio, and particle concentration) and CO2 injectivity changes. The relationship was also statistically validated with reported data from five case studies.


SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1058-1068 ◽  
Author(s):  
P.. Bolourinejad ◽  
R.. Herber

Summary Depleted gas fields are among the most probable candidates for subsurface storage of carbon dioxide (CO2). With proven reservoir and qualified seal, these fields have retained gas over geological time scales. However, unlike methane, injection of CO2 changes the pH of the brine because of the formation of carbonic acid. Subsequent dissolution/precipitation of minerals changes the porosity/permeability of reservoir and caprock. Thus, for adequate, safe, and effective CO2 storage, the subsurface system needs to be fully understood. An important aspect for subsurface storage of CO2 is purity of this gas, which influences risk and cost of the process. To investigate the effects of CO2 plus impurities in a real case example, we have carried out medium-term (30-day) laboratory experiments (300 bar, 100°C) on reservoir and caprock core samples from gas fields in the northeast of the Netherlands. In addition, we attempted to determine the maximum allowable concentration of one of the possible impurities in the CO2 stream [hydrogen sulfide (H2S)] in these fields. The injected gases—CO2, CO2+100 ppm H2S, and CO2+5,000 ppm H2S—were reacting with core samples and brine (81 g/L Na+, 173 g/L Cl−, 22 g/L Ca2+, 23 g/L Mg2+, 1.5 g/L K+, and 0.2 g/L SO42−). Before and after the experiments, the core samples were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) for mineralogical variations. The permeability of the samples was also measured. After the experiments, dissolution of feldspars, carbonates, and kaolinite was observed as expected. In addition, we observed fresh precipitation of kaolinite. However, two significant results were obtained when adding H2S to the CO2 stream. First, we observed precipitation of sulfate minerals (anhydrite and pyrite). This differs from results after pure CO2 injection, where dissolution of anhydrite was dominant in the samples. Second, severe salt precipitation took place in the presence of H2S. This is mainly caused by the nucleation of anhydrite and pyrite, which enabled halite precipitation, and to a lesser degree by the higher solubility of H2S in water and higher water content of the gas phase in the presence of H2S. This was confirmed by the use of CMG-GEM (CMG 2011) modeling software. The precipitation of halite, anhydrite, and pyrite affects the permeability of the samples in different ways. After pure CO2 and CO2+100 ppm H2S injection, permeability of the reservoir samples increased by 10–30% and ≤3%, respectively. In caprock samples, permeability increased by a factor of 3–10 and 1.3, respectively. However, after addition of 5,000 ppm H2S, the permeability of all samples decreased significantly. In the case of CO2+100 ppm H2S, halite, anhydrite, and pyrite precipitation did balance mineral dissolution, causing minimal variation in the permeability of samples.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Lu Shi ◽  
Bing Bai ◽  
Haiqing Wu ◽  
Xiaochun Li

Wellbore and site safety must be ensured during CO2 injection into multiple reservoirs during carbon capture and storage projects. This study focuses on multireservoir injection and investigates the characteristics of the flow-rate distribution and reservoir-risk evaluation as well as their unique influences on multireservoir injection. The results show that more CO2 enters the upper layers than the lower layers. With the increase in injection pressure, the risks of the upper reservoirs increase more dramatically than those of the low reservoirs, which can cause the critical reservoir (CR) to shift. The CO2 injection temperature has a similar effect on the injection flow rate but no effect on the CR’s location. Despite having no effect on the flow-rate distribution, the formation-fracturing pressures in the reservoirs determine which layer becomes the CR. As the thickness or permeability of a layer increases, the inflows exhibit upward and downward trends in this layer and the lower layers, respectively, whereas the inflows of the upper layers remain unchanged; meanwhile, the risks of the lower layer and those of the others decrease and remain constant, respectively. Compared to other parameters, the reservoir porosities have a negligible effect on the reservoir risks and flow-rate distributions.


2021 ◽  
Author(s):  
Clifford Louis ◽  
Hassan Khan ◽  
Yawar Ali

Abstract One of the harms to climate brought about by anthropogenically instigated environmental change is the overabundance creation of CO2 because of industrialization. Research and development endeavors so far have been focused on the improvement of CCS (Carbon Capture and Sequestration), with the fundamental spotlight on the best way to eliminate CO2 from vent gases and how to cover it perpetually in deep aquifers or depleted oil and gas reservoirs to save the environment from the detrimental effects of CO2. At one side, the alarming situation due to excess emission of CO2 from industries has been bulled out and simultaneously, there is higher potential for CO2 in the depleted oil fields which can aid to the Enhanced Oil Recovery (EOR) through the prolonged CO2 injection in depleted oil fields. It is currently turning out to be certain that CCS technology could advance the utilization of fossil fuels than in any case recently thought. This paper discusses the integration of Carbon Capture and Sequestration (CCS) technology with the progressive strategy of Enhanced Oil Recovery (EOR). CCS includes various advances that can be utilized to catch CO2 from point sources. Countries that are badly affected by the harmful effects of global warming with depleting oil reserves in the very near future can be the most viable target of the CCS Project. The scope and potential of different techniques of CCS along with the opportunities and challenges and the real case scenarios happening in the world are discussed in detail. The economics, process cycle and case studies of this futuristic technology intend to give valuable insight to the implementation of this integrated technique to the prevalent depleting oil fields around the globe.


2009 ◽  
Vol 1 (1) ◽  
pp. 1775-1782 ◽  
Author(s):  
Mehdi Zeidouni ◽  
Mehran Pooladi-Darvish ◽  
David Keith

2020 ◽  
Author(s):  
Ryan Payton ◽  
Yizhuo Sun ◽  
Andrew Kingdon ◽  
Saswata Hier-Majumder

Sign in / Sign up

Export Citation Format

Share Document