australian bat lyssavirus
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 391
Author(s):  
Dawn L. Weir ◽  
Si’Ana A. Coggins ◽  
Bang K. Vu ◽  
Jessica Coertse ◽  
Lianying Yan ◽  
...  

Australian bat lyssavirus (ABLV) is a rhabdovirus that circulates in four species of pteropid bats (ABLVp) and the yellow-bellied sheath-tailed bat (ABLVs) in mainland Australia. In the three confirmed human cases of ABLV, rabies illness preceded fatality. As with rabies virus (RABV), post-exposure prophylaxis (PEP) for potential ABLV infections consists of wound cleansing, administration of the rabies vaccine and injection of rabies immunoglobulin (RIG) proximal to the wound. Despite the efficacy of PEP, the inaccessibility of human RIG (HRIG) in the developing world and the high immunogenicity of equine RIG (ERIG) has led to consideration of human monoclonal antibodies (hmAbs) as a passive immunization option that offers enhanced safety and specificity. Using a recombinant vesicular stomatitis virus (rVSV) expressing the glycoprotein (G) protein of ABLVs and phage display, we identified two hmAbs, A6 and F11, which completely neutralize ABLVs/ABLVp, and RABV at concentrations ranging from 0.39 and 6.25 µg/mL and 0.19 and 0.39 µg/mL respectively. A6 and F11 recognize overlapping epitopes in the lyssavirus G protein, effectively neutralizing phylogroup 1 lyssaviruses, while having little effect on phylogroup 2 and non-grouped diverse lyssaviruses. These results suggest that A6 and F11 could be effective therapeutic and diagnostic tools for phylogroup 1 lyssavirus infections.


Author(s):  
Celine Deffrasnes ◽  
Meng-Xiao Luo ◽  
Linda Wiltzer ◽  
Cassandra T David ◽  
Kim G Lieu ◽  
...  

Bats are reservoirs of many pathogenic viruses including the lyssaviruses rabies virus (RABV) and Australian bat lyssavirus (ABLV). Lyssavirus strains are closely associated with particular host reservoir species, with evidence of specific adaptation. Associated phenotypic changes remain poorly understood but are likely to involve P protein, a key mediator of the intracellular virus-host interface. Here, we examine the phenotype of P protein of ABLV, which circulates as two defined lineages associated with frugivorous and insectivorous bats, providing the opportunity compare proteins of viruses adapted to divergent bat species. We report that key functions of P protein in interferon/STAT1 antagonism and the capacity of P protein to undergo nuclear trafficking differ between lineages. Molecular mapping indicates that these differences are functionally distinct, and appear to involve modulatory effects on regulatory regions or structural impact, rather than changes to defined interaction sequences. This results in partial but significant phenotypic divergence, consistent with ‘fine-tuning’ to host biology, and with potentially distinct properties in the virus-host interface between bat families that represent key zoonotic reservoirs.


Author(s):  
Dawn Weir ◽  
Si'Ana Coggins ◽  
Bang Vu ◽  
Jessica Coertse ◽  
Lianying Yan ◽  
...  

Australian bat lyssavirus (ABLV) is a rhabdovirus that circulates in four species of pteropid bats (ABLVp) and the yellow-bellied sheath-tailed bat (ABLVs) in mainland Australia. In the three confirmed human cases of ABLV, rabies illness preceded fatality. As with rabies virus (RABV), post-exposure prophylaxis (PEP) for potential ABLV infections consists of wound cleansing, ad-ministration of the rabies vaccine and injection of rabies immunoglobulin (RIG) proximal to the wound. Despite the efficacy of PEP, the inaccessibility of human RIG (HRIG) in the developing world and the high immunogenicity of equine RIG (ERIG) has led to consideration of human monoclonal antibodies (hmAbs) as a passive immunization option that offers enhanced safety and specificity. Using a recombinant vesicular stomatitis virus (rVSV) expressing the glycoprotein (G) protein of ABLVs and phage display, we identified two hmAbs, A6 and F11, which completely neutralize ABLVs/ABLVp, and RABV at concentrations ranging from 0.19-3.12 µg/mL and 0.39-6.25 µg/mL respectively. A6 and F11 recognize overlapping epitopes in the lyssavirus G protein, ef-fectively neutralizing phylogroup 1 lyssaviruses, while having little effect on phylogroup 2 and non-grouped diverse lyssaviruses. These results suggest A6 and F11 could be effective therapeutic and diagnostic tools for phylogroup 1 lyssavirus infections.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Rachel Iglesias ◽  
Keren Cox-Witton ◽  
Hume Field ◽  
Lee F. Skerratt ◽  
Janine Barrett

Australian bat lyssavirus (ABLV) was first described in 1996 and has been regularly detected in Australian bats since that time. While the virus does not cause population level impacts in bats and has minimal impacts on domestic animals, it does pose a public health risk. For this reason, bats are monitored for ABLV and a national dataset is collated and maintained by Wildlife Health Australia. The 2010–2016 dataset was analysed using logistic regression and time-series analysis to identify predictors of infection status in bats and the factors associated with human exposure to bats. In common with previous passive surveillance studies, we found that little red flying-foxes (Pteropus scapulatus) are more likely than other species to be infected with ABLV. In the four Australian mainland species of flying-fox, there are seasonal differences in infection risk that may be associated with reproductive cycles, with summer and autumn the seasons of greatest risk. The risk of human contact was also seasonal, with lower risk in winter. In line with other studies, we found that the circumstances in which the bat is encountered, such as exhibiting abnormal behaviour or being grounded, are risk factors for ABLV infection and human contact and should continue be key components of public health messaging. We also found evidence of biased recording of some types of information, which made interpretation of some findings more challenging. Strengthening of “One Health” linkages between public health and animal health services at the operational level could help overcome these biases in future, and greater harmonisation nationally would increase the value of the dataset.


2020 ◽  
Vol 67 (4) ◽  
pp. 435-442
Author(s):  
Janine Barrett ◽  
Alison Höger ◽  
Kalpana Agnihotri ◽  
Jane Oakey ◽  
Lee F. Skerratt ◽  
...  

2020 ◽  
Vol 41 (1) ◽  
pp. 6
Author(s):  
Kim Halpin ◽  
David N Durrheim

This review discusses the history, epidemiology, diagnostics, clinical presentation in humans, as well as control and prevention measures, of the high-profile viruses Hendra virus (HeV) and Australian bat lyssavirus (ABLV). Since the discovery of HeV and ABLV in the 1990s, these viruses have only caused disease in areas where spill-over hosts, including humans, encounter the reservoir host.


2019 ◽  
Vol 4 (1) ◽  
pp. 46 ◽  
Author(s):  
Diana Prada ◽  
Victoria Boyd ◽  
Michelle Baker ◽  
Bethany Jackson ◽  
Mark O’Dea

Australian bat lyssavirus (ABLV) is a known causative agent of neurological disease in bats, humans and horses. It has been isolated from four species of pteropid bats and a single microbat species (Saccolaimus flaviventris). To date, ABLV surveillance has primarily been passive, with active surveillance concentrating on eastern and northern Australian bat populations. As a result, there is scant regional ABLV information for large areas of the country. To better inform the local public health risks associated with human-bat interactions, this study describes the lyssavirus prevalence in microbat communities in the South West Botanical Province of Western Australia. We used targeted real-time PCR assays to detect viral RNA shedding in 839 oral swabs representing 12 species of microbats, which were sampled over two consecutive summers spanning 2016–2018. Additionally, we tested 649 serum samples via Luminex® assay for reactivity to lyssavirus antigens. Active lyssavirus infection was not detected in any of the samples. Lyssavirus antibodies were detected in 19 individuals across six species, with a crude prevalence of 2.9% (95% CI: 1.8–4.5%) over the two years. In addition, we present the first records of lyssavirus exposure in two Nyctophilus species, and Falsistrellus mackenziei.


2018 ◽  
Vol 3 (4) ◽  
pp. 109 ◽  
Author(s):  
Andrea Certoma ◽  
Ross A. Lunt ◽  
Wilna Vosloo ◽  
Ina Smith ◽  
Axel Colling ◽  
...  

Australian bat lyssavirus (ABLV) is closely related to the classical rabies virus and has been associated with three human fatalities and two equine fatalities in Australia. ABLV infection in humans causes encephalomyelitis, resulting in fatal disease, but has no effective therapy. The virus is maintained in enzootic circulation within fruit bats (Pteropid spp.) and at least one insectivorous bat variety (Saccolaimus flaviventris). Most frequently, laboratory testing is conducted on pteropodid bat brains, either following a potential human exposure through bites, scratches and other direct contacts with bats, or as opportunistic assessment of sick or dead bats. The level of medical intervention and post-exposure prophylaxis is largely determined on laboratory testing for antigen/virus as the demonstrable infection status of the in-contact bat. This study evaluates the comparative diagnostic performance of a lateral flow test, Anigen Rabies Ag detection rapid test (RDT), in pteropodid variant of ABLV-infected bat brain tissues. The RDT demonstrated 100% agreement with the reference standard fluorescent antibody test on 43 clinical samples suggesting a potential application in rapid diagnosis of pteropodid variant of ABLV infection. A weighted Kappa value of 0.95 confirmed a high level of agreement between both tests.


Sign in / Sign up

Export Citation Format

Share Document