scholarly journals Adjacency Labelling for Planar Graphs (and Beyond)

2021 ◽  
Vol 68 (6) ◽  
pp. 1-33
Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Cyril Gavoille ◽  
Gwenaël Joret ◽  
Piotr Micek ◽  
...  

We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an n -vertex planar graph G is assigned a (1 + o(1)) log 2 n -bit label and the labels of two vertices u and v are sufficient to determine if uv is an edge of G . This is optimal up to the lower order term and is the first such asymptotically optimal result. An alternative, but equivalent, interpretation of this result is that, for every positive integer n , there exists a graph U n with n 1+o(1) vertices such that every n -vertex planar graph is an induced subgraph of U n . These results generalize to a number of other graph classes, including bounded genus graphs, apex-minor-free graphs, bounded-degree graphs from minor closed families, and k -planar graphs.

2021 ◽  
Author(s):  
Michał Dębski ◽  
Piotr Micek ◽  
Felix Schröder ◽  
Stefan Felsner

A vertex coloring $\phi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ of $G$ either $\phi$ uses more than $p$ colors on $H$ or there is a color that appears exactly once on $H$. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function $f$ such that for every $p\geq1$, every graph in the class admits a $p$-centered coloring using at most $f(p)$ colors. In this paper, we give upper bounds for the maximum number of colors needed in a $p$-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit $p$-centered colorings with $O(p^3\log p)$ colors where the previous bound was $O(p^{19})$; (2) bounded degree graphs admit $p$-centered colorings with $O(p)$ colors while it was conjectured that they may require exponential number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth $t$ that require $\binom{p+t}{t}$ colors in any $p$-centered coloring. This bound matches the upper bound; (5) there are planar graphs that require $\Omega(p^2\log p)$ colors in any $p$-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth $3$. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.


Author(s):  
NOGA ALON ◽  
RAJKO NENADOV

AbstractWe show that for any constant Δ ≥ 2, there exists a graph Γ withO(nΔ / 2) vertices which contains everyn-vertex graph with maximum degree Δ as an induced subgraph. For odd Δ this significantly improves the best-known earlier bound and is optimal up to a constant factor, as it is known that any such graph must have at least Ω(nΔ/2) vertices.


2017 ◽  
Vol 27 (4) ◽  
pp. 623-642 ◽  
Author(s):  
NINA KAMČEV ◽  
TOMASZ ŁUCZAK ◽  
BENNY SUDAKOV

A sequenceSis calledanagram-freeif it contains no consecutive symbolsr1r2. . .rkrk+1. . .r2ksuch thatrk+1. . .r2kis a permutation of the blockr1r2. . .rk. Answering a question of Erdős and Brown, Keränen constructed an infinite anagram-free sequence on four symbols. Motivated by the work of Alon, Grytczuk, Hałuszczak and Riordan [2], we consider a natural generalization of anagram-free sequences for graph colourings. A colouring of the vertices of a given graphGis calledanagram-freeif the sequence of colours on any path inGis anagram-free. We call the minimal number of colours needed for such a colouring theanagram-chromaticnumber ofG.In this paper we study the anagram-chromatic number of several classes of graphs like trees, minor-free graphs and bounded-degree graphs. Surprisingly, we show that there are bounded-degree graphs (such as random regular graphs) in which anagrams cannot be avoided unless we essentially give each vertex a separate colour.


10.37236/635 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Guantao Chen ◽  
Yoshimi Egawa ◽  
Ken-ichi Kawarabayashi ◽  
Bojan Mohar ◽  
Katsuhiro Ota

The toughness of a non-complete graph $G$ is the minimum value of $\frac{|S|}{\omega(G-S)}$ among all separating vertex sets $S\subset V(G)$, where $\omega(G-S)\ge 2$ is the number of components of $G-S$. It is well-known that every $3$-connected planar graph has toughness greater than $1/2$. Related to this property, every $3$-connected planar graph has many good substructures, such as a spanning tree with maximum degree three, a $2$-walk, etc. Realizing that 3-connected planar graphs are essentially the same as 3-connected $K_{3,3}$-minor-free graphs, we consider a generalization to $a$-connected $K_{a,t}$-minor-free graphs, where $3\le a\le t$. We prove that there exists a positive constant $h(a,t)$ such that every $a$-connected $K_{a,t}$-minor-free graph $G$ has toughness at least $h(a,t)$. For the case where $a=3$ and $t$ is odd, we obtain the best possible value for $h(3,t)$. As a corollary it is proved that every such graph of order $n$ contains a cycle of length $\Omega(\log_{h(a,t)} n)$.


2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Niels Grüttemeier ◽  
Christian Komusiewicz ◽  
Jannik Schestag ◽  
Frank Sommer

We introduce and study the Bicolored $P_3$ Deletion problem defined as follows. The input is a graph $G=(V,E)$ where the edge set $E$ is partitioned into a set $E_r$ of red edges and a set $E_b$ of blue edges. The question is whether we can delete at most $k$ edges such that $G$ does not contain a bicolored $P_3$ as an induced subgraph. Here, a bicolored $P_3$ is a path on three vertices with one blue and one red edge. We show that Bicolored $P_3$ Deletion is NP-hard and cannot be solved in $2^{o(|V|+|E|)}$ time on bounded-degree graphs if the ETH is true. Then, we show that Bicolored $P_3$ Deletion is polynomial-time solvable when $G$ does not contain a bicolored $K_3$, that is, a triangle with edges of both colors. Moreover, we provide a polynomial-time algorithm for the case that $G$ contains no blue $P_3$, red $P_3$, blue $K_3$, and red $K_3$. Finally, we show that Bicolored $P_3$ Deletion can be solved in $ O(1.84^k\cdot |V| \cdot |E|)$ time and that it admits a kernel with $ O(k\Delta\min(k,\Delta))$ vertices, where $\Delta$ is the maximum degree of $G$. Comment: 25 pages


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2021 ◽  
Author(s):  
Sriram Bhyravarapu ◽  
Subrahmanyam Kalyanasundaram ◽  
Rogers Mathew

2018 ◽  
Vol 27 (5) ◽  
pp. 763-773
Author(s):  
AGELOS GEORGAKOPOULOS ◽  
STEPHAN WAGNER
Keyword(s):  

We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy.


1996 ◽  
Vol 05 (06) ◽  
pp. 877-883 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
TATSUYA TSUKAMOTO

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2, n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.


Sign in / Sign up

Export Citation Format

Share Document