ambient particle
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 25)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 118 (49) ◽  
pp. e2110117118
Author(s):  
Gholamhossein Bagheri ◽  
Birte Thiede ◽  
Bardia Hejazi ◽  
Oliver Schlenczek ◽  
Eberhard Bodenschatz

There is ample evidence that masking and social distancing are effective in reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. However, due to the complexity of airborne disease transmission, it is difficult to quantify their effectiveness, especially in the case of one-to-one exposure. Here, we introduce the concept of an upper bound for one-to-one exposure to infectious human respiratory particles and apply it to SARS-CoV-2. To calculate exposure and infection risk, we use a comprehensive database on respiratory particle size distribution; exhalation flow physics; leakage from face masks of various types and fits measured on human subjects; consideration of ambient particle shrinkage due to evaporation; and rehydration, inhalability, and deposition in the susceptible airways. We find, for a typical SARS-CoV-2 viral load and infectious dose, that social distancing alone, even at 3.0 m between two speaking individuals, leads to an upper bound of 90% for risk of infection after a few minutes. If only the susceptible wears a face mask with infectious speaking at a distance of 1.5 m, the upper bound drops very significantly; that is, with a surgical mask, the upper bound reaches 90% after 30 min, and, with an FFP2 mask, it remains at about 20% even after 1 h. When both wear a surgical mask, while the infectious is speaking, the very conservative upper bound remains below 30% after 1 h, but, when both wear a well-fitting FFP2 mask, it is 0.4%. We conclude that wearing appropriate masks in the community provides excellent protection for others and oneself, and makes social distancing less important.


2021 ◽  
Vol 206 ◽  
pp. 108351
Author(s):  
Md Shakhaoat Hossain ◽  
Wenwei Che ◽  
H. Christopher Frey ◽  
Alexis K.H. Lau

Author(s):  
Veronica A. Wang ◽  
Carolina L. Zilli Vieira ◽  
Eric Garshick ◽  
Joel D. Schwartz ◽  
Michael S. Garshick ◽  
...  

Background Since solar activity and related geomagnetic disturbances modulate autonomic nervous system activity, we hypothesized that these events would be associated with blood pressure (BP). Methods and Results We studied 675 elderly men from the Normative Aging Study (Boston, MA) with 1949 BP measurements between 2000 and 2017. Mixed‐effects regression models were used to investigate the association of average 1‐day (ie, day of BP measurement) to 28‐day interplanetary magnetic field intensity, sunspot number, and a dichotomized measure of global geomagnetic activity (K p index) in 4‐day increments with diastolic and systolic BP. We adjusted for meteorological conditions and other covariates associated with BP, and in additional models adjusted for ambient air pollutants (particulate matter with an aerodynamic diameter ≤2.5 µm, black carbon, and particle number) and ambient particle radioactivity. There were positive associations between interplanetary magnetic field, sunspot number, and K p index and BP that were greatest with these exposures averaged over 16 through 28 days before BP measurement. An interquartile range increase of 16‐day interplanetary magnetic field and sunspot number and higher K p index were associated with a 2.5 (95% CI, 1.7‒3.2), 2.8 (95% CI, 2.1‒3.4), and 1.7 (95% CI, 0.8‒2.5) mm Hg increase, respectively, for diastolic BP as well as a 2.1 (95% CI, 0.7‒3.6), 2.7 (95% CI, 1.5‒4.0), and 0.4 (95% CI, −1.2 to 2.1) mm Hg increase, respectively, for systolic BP. Associations remained after adjustment for ambient air pollutants and ambient particle radioactivity. Conclusions Solar activity and solar‐driven geomagnetic disturbances were positively associated with BP, suggesting that these natural phenomena influence BP in elderly men.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonella Zanobetti ◽  
Brent A. Coull ◽  
Heike Luttmann‐Gibson ◽  
Lenie van Rossem ◽  
Sheryl L. Rifas‐Shiman ◽  
...  

Background Both elemental metals and particulate air pollution have been reported to influence adult blood pressure (BP). The aim of this study is to examine which elemental components of particle mass with diameter ≤2.5 μm (PM 2.5 ) are responsible for previously reported associations between PM 2.5 and neonatal BP. Methods and Results We studied 1131 mother‐infant pairs in Project Viva, a Boston‐area prebirth cohort. We measured systolic BP (SBP) and diastolic BP (DBP) at a mean age of 30 hours. We calculated average exposures during the 2 to 7 days before birth for the PM 2.5 components—aluminum, arsenic, bromine, sulfur, copper, iron, zinc, nickel, vanadium, titanium, magnesium, potassium, silicon, sodium, chlorine, calcium, and lead—measured at the Harvard supersite. Adjusting for covariates and PM 2.5 , we applied regression models to examine associations between PM 2.5 components and median SBP and DBP, and used variable selection methods to select which components were more strongly associated with each BP outcome. We found consistent results with higher nickel associated with significantly higher SBP and DBP, and higher zinc associated with lower SBP and DBP. For an interquartile range increase in the log Z score (1.4) of nickel, we found a 1.78 mm Hg (95% CI, 0.72–2.84) increase in SBP and a 1.30 (95% CI, 0.54–2.06) increase in DBP. Increased zinc (interquartile range log Z score 1.2) was associated with decreased SBP (−1.29 mm Hg; 95% CI, −2.09 to −0.50) and DBP (−0.85 mm Hg; 95% CI: −1.42 to −0.29). Conclusions Our findings suggest that prenatal exposures to particulate matter components, and particularly nickel, may increase newborn BP.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiang Li ◽  
Annelise J. Blomberg ◽  
John D. Spengler ◽  
Brent A. Coull ◽  
Joel D. Schwartz ◽  
...  

Abstract Unconventional oil and natural gas development (UOGD) expanded extensively in the United States from the early 2000s. However, the influence of UOGD on the radioactivity of ambient particulate is not well understood. We collected the ambient particle radioactivity (PR) measurements of RadNet, a nationwide environmental radiation monitoring network. We obtained the information of over 1.5 million wells from the Enverus database. We investigated the association between the upwind UOGD well count and the downwind gross-beta radiation with adjustment for environmental factors governing the natural emission and transport of radioactivity. Our statistical analysis found that an additional 100 upwind UOGD wells within 20 km is associated with an increase of 0.024 mBq/m3 (95% confidence interval [CI], 0.020, 0.028 mBq/m3) in the gross-beta particle radiation downwind. Based on the published health analysis of PR, the widespread UOGD could induce adverse health effects to residents living close to UOGD by elevating PR.


Sign in / Sign up

Export Citation Format

Share Document