device independence
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Gopalan Raghavan

There is a looming threat over current methods of data encryption through advances in quantum computation. Interestingly, this potential threat can be countered through the use of quantum resources such as coherent superposition, entanglement and inherent randomness. These, together with non-clonability of arbitrary quantum states, offer provably secure means of sharing encryption keys between two parties. This physically assured privacy is however provably secure only in theory but not in practice. Device independent approaches seek to provide physically assured privacy of devices of untrusted origin. The quest towards realization of such devices is predicated on conducting loop-hole-free Bell tests which require the use of certified quantum random number generators. The experimental apparatuses for conducting such tests themselves use non-ideal sources, detectors and optical components making such certification extremely difficult. This expository chapter presents a brief overview (not a review) of Device Independence and the conceptual and practical difficulties it entails.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jingdian Ming ◽  
Yongbin Zhou ◽  
Huizhong Li ◽  
Qian Zhang

AbstractDue to its provable security and remarkable device-independence, masking has been widely accepted as a noteworthy algorithmic-level countermeasure against side-channel attacks. However, relatively high cost of masking severely limits its applicability. Considering the high tackling complexity of non-linear operations, most masked AES implementations focus on the security and cost reduction of masked S-boxes. In this paper, we focus on linear operations, which seems to be underestimated, on the contrary. Specifically, we discover some security flaws and redundant processes in popular first-order masked AES linear operations, and pinpoint the underlying root causes. Then we propose a provably secure and highly efficient masking scheme for AES linear operations. In order to show its practical implications, we replace the linear operations of state-of-the-art first-order AES masking schemes with our proposal, while keeping their original non-linear operations unchanged. We implement four newly combined masking schemes on an Intel Core i7-4790 CPU, and the results show they are roughly 20% faster than those original ones. Then we select one masked implementation named RSMv2 due to its popularity, and investigate its security and efficiency on an AVR ATMega163 processor and four different FPGA devices. The results show that no exploitable first-order side-channel leakages are detected. Moreover, compared with original masked AES implementations, our combined approach is nearly 25% faster on the AVR processor, and at least 70% more efficient on four FPGA devices.


Cryptography ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 27
Author(s):  
Brian Coyle ◽  
Elham Kashefi ◽  
Matty J. Hoban

The generation of certifiable randomness is one of the most promising applications of quantum technologies. Furthermore, the intrinsic non-locality of quantum correlations allow us to certify randomness in a device-independent way, i.e., we do not need to make assumptions about the devices used. Due to the work of Curchod et al. a single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness. However, the obtaining of this randomness is experimentally challenging as it requires a large number of measurements, both projective and general. Motivated by these difficulties in the device-independent setting, we instead consider the scenario of one-sided device independence where certain devices are trusted, and others are not; a scenario motivated by asymmetric experimental set-ups such as ion-photon networks. We show how certain aspects of previous works can be adapted to this scenario and provide theoretical bounds on the amount of randomness that can be certified. Furthermore, we give a protocol for unbounded randomness certification in this scenario, and provide numerical results demonstrating the protocol in the ideal case. Finally, we numerically test the possibility of implementing this scheme on near-term quantum technologies, by considering the performance of the protocol on several physical platforms.


2018 ◽  
Vol 97 (6) ◽  
Author(s):  
Jérémy Ribeiro ◽  
Le Phuc Thinh ◽  
Jędrzej Kaniewski ◽  
Jonas Helsen ◽  
Stephanie Wehner
Keyword(s):  

2015 ◽  
Vol 17 (8) ◽  
pp. 083040 ◽  
Author(s):  
Alexandru Gheorghiu ◽  
Elham Kashefi ◽  
Petros Wallden

Author(s):  
Christopher Mayer ◽  
Martin Morandell ◽  
Matthias Gira ◽  
Kai Hackbarth ◽  
Martin Petzold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document