scholarly journals Erratum: Semi device independence of the BB84 protocol (2016New J. Phys.18055010)

2016 ◽  
Vol 18 (6) ◽  
pp. 069601
Author(s):  
Erik Woodhead
Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jingdian Ming ◽  
Yongbin Zhou ◽  
Huizhong Li ◽  
Qian Zhang

AbstractDue to its provable security and remarkable device-independence, masking has been widely accepted as a noteworthy algorithmic-level countermeasure against side-channel attacks. However, relatively high cost of masking severely limits its applicability. Considering the high tackling complexity of non-linear operations, most masked AES implementations focus on the security and cost reduction of masked S-boxes. In this paper, we focus on linear operations, which seems to be underestimated, on the contrary. Specifically, we discover some security flaws and redundant processes in popular first-order masked AES linear operations, and pinpoint the underlying root causes. Then we propose a provably secure and highly efficient masking scheme for AES linear operations. In order to show its practical implications, we replace the linear operations of state-of-the-art first-order AES masking schemes with our proposal, while keeping their original non-linear operations unchanged. We implement four newly combined masking schemes on an Intel Core i7-4790 CPU, and the results show they are roughly 20% faster than those original ones. Then we select one masked implementation named RSMv2 due to its popularity, and investigate its security and efficiency on an AVR ATMega163 processor and four different FPGA devices. The results show that no exploitable first-order side-channel leakages are detected. Moreover, compared with original masked AES implementations, our combined approach is nearly 25% faster on the AVR processor, and at least 70% more efficient on four FPGA devices.


2005 ◽  
Vol 03 (supp01) ◽  
pp. 143-143 ◽  
Author(s):  
HOI-KWONG LO

Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states—a vacuum and a weak decoy state—asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution", . We also have done the first experimental demonstration of decoy state quantum key distribution, over 15km of Telecom fibers. This part of work is published in "Experimental Decoy State Quantum Key Distribution Over 15km", .


Author(s):  
B. R. Thatch ◽  
A. Myklebust

Abstract Creation of input specifications for synthesis or analysis of spatial mechanisms can be a significant problem. A graphics preprocessor which interactively assists in the definition of spatial mechanism problems is described. New methods of depth cucing and six DOF data entry are presented. To achieve graphics device-independence, the proposed graphics standard PHIGS (Programmer’s Hierarchical Interactive Graphics System) is used. Examples of application are presented including generation of input commands for Integrated Mechanisms Program (IMP) and generation of input for spatial mechanism synthesis routines.


Author(s):  
Matt Germonprez ◽  
Michel Avital ◽  
Nikhil Srinivasan

The multiple and ever-evolving standards that govern mobile computing result in multilayered heterogeneous environments of mobile devices and services. Thus, as mobile computing becomes more prevalent, it is important that designers build systems that support as many unique, in-use, and userdefined characteristics as possible. This study explores the related effects of two existing standardized technologies: hypertext markup language (HTML) and cascading style sheets (CSS). Furthermore, whereas we investigate the impact of the CSS standard in the context of computing in general and mobile computing in particular, we also focus on two emerging roles of this standard: device independence and usability. Our findings suggest that the application of the CSS standard can improve data delivery across independent devices with varied bandwidth and resource availability, thereby providing device independence and improved usability respectively. We demonstrate that through their effect on device independence and usability, CSS plays an important role in the evolution, expansion, and openness of mobile computing.


Sign in / Sign up

Export Citation Format

Share Document