scholarly journals Certified Randomness From Steering Using Sequential Measurements

Cryptography ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 27
Author(s):  
Brian Coyle ◽  
Elham Kashefi ◽  
Matty J. Hoban

The generation of certifiable randomness is one of the most promising applications of quantum technologies. Furthermore, the intrinsic non-locality of quantum correlations allow us to certify randomness in a device-independent way, i.e., we do not need to make assumptions about the devices used. Due to the work of Curchod et al. a single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness. However, the obtaining of this randomness is experimentally challenging as it requires a large number of measurements, both projective and general. Motivated by these difficulties in the device-independent setting, we instead consider the scenario of one-sided device independence where certain devices are trusted, and others are not; a scenario motivated by asymmetric experimental set-ups such as ion-photon networks. We show how certain aspects of previous works can be adapted to this scenario and provide theoretical bounds on the amount of randomness that can be certified. Furthermore, we give a protocol for unbounded randomness certification in this scenario, and provide numerical results demonstrating the protocol in the ideal case. Finally, we numerically test the possibility of implementing this scheme on near-term quantum technologies, by considering the performance of the protocol on several physical platforms.

Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


Author(s):  
K.-H. Herrmann ◽  
D. Krahl ◽  
H.-P Rust

The high detection quantum efficiency (DQE) is the main requirement for an imagerecording system used in electron microscopy of radiation-sensitive specimens. An electronic TV system of the type shown in Fig. 1 fulfills these conditions and can be used for either analog or digital image storage and processing [1], Several sources of noise may reduce the DQE, and therefore a careful selection of various elements is imperative.The noise of target and of video amplifier can be neglected when the converter stages produce sufficient target electrons per incident primary electron. The required gain depends on the type of the tube and also on the type of the signal processing chosen. For EBS tubes, for example, it exceeds 10. The ideal case, in which all impinging electrons create uniform charge peaks at the target, is not obtainable for several reasons, and these will be discussed as they relate to a system with a scintillator, fiber-optic and photo-cathode combination as the first stage.


2001 ◽  
Vol 24 (4) ◽  
pp. 629-640 ◽  
Author(s):  
Joshua B. Tenenbaum ◽  
Thomas L. Griffiths

Shepard has argued that a universal law should govern generalization across different domains of perception and cognition, as well as across organisms from different species or even different planets. Starting with some basic assumptions about natural kinds, he derived an exponential decay function as the form of the universal generalization gradient, which accords strikingly well with a wide range of empirical data. However, his original formulation applied only to the ideal case of generalization from a single encountered stimulus to a single novel stimulus, and for stimuli that can be represented as points in a continuous metric psychological space. Here we recast Shepard's theory in a more general Bayesian framework and show how this naturally extends his approach to the more realistic situation of generalizing from multiple consequential stimuli with arbitrary representational structure. Our framework also subsumes a version of Tversky's set-theoretic model of similarity, which is conventionally thought of as the primary alternative to Shepard's continuous metric space model of similarity and generalization. This unification allows us not only to draw deep parallels between the set-theoretic and spatial approaches, but also to significantly advance the explanatory power of set-theoretic models.


Author(s):  
Levy O’Flynn.

Referendums are now common in ‘conflict societies’—societies where a widespread and concerted campaign of violence between groups recently occurred, is occurring, or is liable to occur. In the ideal case, a peace referendum can secure consent for a new formal peace settlement among warring groups and provide the settlement with a popular mandate. In practice, however, settlements, once attained, may struggle to endure. Some may collapse entirely. Against this background we introduced what we call the ‘Deliberative Peace Referendum’, or ‘DPR’. A DPR is a purpose-designed deliberative referendum held under conditions of conflict. As this chapter recognizes, designing a referendum to be more deliberative is a challenge under any circumstances. It may be hardest of all amid armed intercommunal conflict.


2021 ◽  
pp. 229-334
Author(s):  
Arthur Ripstein

This chapter presents Arthur Ripstein’s responses to the authors of the preceding chapters. The chapter follows the order of the contributions, and are divided broadly into responses to the papers in Part I concerning the ways in which facts matter to right, and the relation between the flawed world in which we find ourselves and the ideal case that Kant contemplates, and to those in Part II dealing with more specific issues in the Kantian theory of war and peace.


2005 ◽  
Vol 128 (6) ◽  
pp. 1361-1365
Author(s):  
Mine Demirsoy

In this study, the effects of oblique running and ideal motion on the stresses of bridge crane wheels were examined. The stresses on the crane wheels were calculated using the rotation angles and the forces. The commercial finite element package I-DEAS was used for the solution of the problem. The technical values of two double girder bridge cranes with 32 and 50ton carrying capacities and 18m crane span were used. Finally, the stresses caused by the oblique running were compared with the ideal motion. The numerical results show that the stress values increase by the oblique running.


2018 ◽  
Vol 924 ◽  
pp. 563-567
Author(s):  
Md Monzurul Alam ◽  
Dallas T. Morisette ◽  
James A. Cooper

In the ideal case, superjunction (SJ) drift regions theoretically exhibit a linear relationship between specific-on resistance Ron,sp and blocking voltage VBR, but this requires perfect charge balance between the alternating n and p pillars. If any degree of imbalance exists, the relationship becomes quadratic, similar to a conventional drift region, although with somewhat improved performance. In this work, we analyze superjunction drift regions in 4H-SiC under realistic degrees of charge imbalance and show that, with proper design, a reduction in specific on-resistance of 2~10x is possible as long as the imbalance remains less than ±20%.


2019 ◽  
Vol 626 ◽  
pp. A1
Author(s):  
R. Rougeot ◽  
R. Flamary ◽  
D. Mary ◽  
C. Aime

Context. The solar coronagraph ASPIICS will fly on the future ESA formation flying mission Proba-3. The instrument combines an external occulter of diameter 1.42 m and a Lyot solar coronagraph of 5 cm diameter, located downstream at a distance of 144 m. Aims. The theoretical performance of the externally occulted Lyot coronagraph has been computed by assuming perfect optics. In this paper, we improve related modelling by introducing roughness scattering effects from the telescope. We have computed the diffraction at the detector, that we compare to the ideal case without perturbation to estimate the performance degradation. We have also investigated the influence of sizing the internal occulter and the Lyot stop, and we performed a sensitivity analysis on the roughness. Methods. We have built on a recently published numerical model of diffraction propagation. The micro-structures of the telescope are built by filtering a white noise with a power spectral density following an isotropic ABC function, suggested by Harvey scatter theory. The parameters were tuned to fit experimental data measured on ASPIICS lenses. The computed wave front error was included in the Fresnel wave propagation of the coronagraph. A circular integration over the solar disk was performed to reconstruct the complete diffraction intensity. Results. The level of micro-roughness is 1.92 nm root-mean-square. Compared to the ideal case, in the plane of the internal occulter, the diffraction peak intensity is reduced by ≃0.001%. However, the intensity outside the peak increases by 12% on average, up to 20% at 3 R⊙, where the mask does not filter out the diffraction. At detector level, the diffraction peak remains ≃10−6 at 1.1 R⊙, similar to the ideal case, but the diffraction tail at large solar radius is much higher, up to one order of magnitude. Sizing the internal occulter and the Lyot stop does not improve the rejection, as opposed to the ideal case. Conclusions. Besides these results, this paper provides a methodology to implement roughness scattering in the wave propagation model for the solar coronagraph.


2020 ◽  
Vol 10 (11) ◽  
pp. 3782 ◽  
Author(s):  
Abdel-Baset A. Mohamed ◽  
Ahmed Farouk ◽  
Mansour F. Yassen ◽  
Hichem Eleuch

In this paper, we analyze the dynamics of non-local correlations (NLCs) in an anisotropic two-qubit Heisenberg XYZ model under the effect of the phase damping. An analytical solution is obtained by applying a method based on the eigenstates and the eigenvalues of the Hamiltonian. It is observed that the generated NLCs are controlled by the Dzyaloshinskii–Moriya interaction, the purity indicator, the interaction with the environment, and the anisotropy. Furthermore, it is found that the quantum correlations, as well as the sudden death and sudden birth phenomena, depend on the considered physical parameters. In particular, the system presents a special correlation: the skew-information correlation. The log-negativity and the uncertainty-induced non-locality exhibit the sudden-change behavior. The purity of the initial states plays a crucial role on the generated nonlocal correlations. These correlations are sensitive to the DM interaction, anisotropy, and phase damping.


Sign in / Sign up

Export Citation Format

Share Document