hydrodynamical modelling
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
B Veronesi ◽  
G Lodato ◽  
G Dipierro ◽  
E Ragusa ◽  
C Hall ◽  
...  

Abstract Recent observations of protoplanetary discs reveal disc substructures potentially caused by embedded planets. We investigate how the gas surface density in discs changes the observed morphology in scattered light and dust continuum emission. Assuming that disc substructures are due to embedded protoplanets, we combine hydrodynamical modelling with radiative transfer simulations of dusty protoplanetary discs hosting planets. The response of different dust species to the gravitational perturbation induced by a planet depends on the drag stopping time — a function of the generally unknown local gas density. Small dust grains, being stuck to the gas, show spirals. Larger grains decouple, showing progressively more axisymmetric (ring-like) substructure as decoupling increases with grain size or with the inverse of the gas disc mass. We show that simultaneous modelling of scattered light and dust continuum emission is able to constrain the Stokes number, St. Hence, if the dust properties are known, this constrains the local gas surface density, Σgas, at the location of the structure, and hence the total gas mass. In particular, we found that observing ring-like structures in mm-emitting grains requires St ≳ 0.4 and therefore Σgas ≲ 0.4 g/cm2. We apply this idea to observed protoplanetary discs showing substructures both in scattered light and in the dust continuum.


2019 ◽  
Vol 629 ◽  
pp. A124 ◽  
Author(s):  
Laureano Martinez ◽  
Melina C. Bersten

The detailed study of supernovae (SNe) and their progenitors allows a better understanding of the evolution of massive stars and how these end their lives. Despite its importance, the range of physical parameters for the most common type of explosion, the type II supernovae (SNe II), is still unknown. In particular, previous studies of type II-Plateau supernovae (SNe II-P) showed a discrepancy between the progenitor masses inferred from hydrodynamic models and those determined from the analysis of direct detections in archival images. Our goal is to derive physical parameters (progenitor mass, radius, explosion energy and total mass of nickel) through hydrodynamical modelling of light curves and expansion velocity evolution for a select group of six SNe II-P (SN 2004A, SN 2004et, SN 2005cs, SN 2008bk, SN 2012aw, and SN 2012ec) that fulfilled the following three criteria: (1) enough photometric and spectroscopic monitoring is available to allow for a reliable hydrodynamical modelling; (2) a direct progenitor detection has been achieved; and (3) there exists confirmation of the progenitor identification via its disappearance in post-explosion images. We then compare the masses obtained by our hydrodynamic models with those obtained by direct detections of the progenitors to test the existence of such a discrepancy. As opposed to some previous works, we find good agreement between both methods. We obtain a wide range in the physical parameters for our SN sample. We infer presupernova masses between 10 and 23 M⊙, progenitor radii between 400 and 1250 R⊙, explosion energies between 0.2 and 1.4 foe, and 56Ni masses between 0.0015 and 0.085 M⊙. An analysis of possible correlations between different explosion parameters is presented. The clearest relation found is that between the mass and the explosion energy, in the sense that more-massive objects produce higher-energy explosions, in agreement with previous studies. Finally, we also compare our results with previous physical–observed parameter relations widely used in the literature. We find significant differences between both methods, which indicates that caution should be exercised when using these relations.


2016 ◽  
Vol 464 (3) ◽  
pp. 3013-3020 ◽  
Author(s):  
M. L. Pumo ◽  
L. Zampieri ◽  
S. Spiro ◽  
A. Pastorello ◽  
S. Benetti ◽  
...  

2009 ◽  
Vol 26 (3) ◽  
pp. 345-350 ◽  
Author(s):  
E. Maiorca ◽  
E. Caffau ◽  
P. Bonifacio ◽  
M. Busso ◽  
R. Faraggiana ◽  
...  

AbstractWe present a new determination of the solar nitrogen abundance making use of 3D hydrodynamical modelling of the solar photosphere, which is more physically motivated than traditional static 1D models. We selected suitable atomic spectral lines, relying on equivalent width measurements already existing in the literature. For atmospheric modelling we used the co5bold 3D radiation hydrodynamics code. We investigated the influence of both deviations from local thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities (granulation effects) on the resulting abundance. We also compared several atlases of solar flux and centre-disc intensity presently available. As a result of our analysis, the photospheric solar nitrogen abundance is A(N) = 7.86 ± 0.12.


Sign in / Sign up

Export Citation Format

Share Document