auto cross covariance
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2019 ◽  
Vol 16 (4) ◽  
pp. 347-355
Author(s):  
Zhao-Chun Xu ◽  
Xuan Xiao ◽  
Wang-Ren Qiu ◽  
Peng Wang ◽  
Xin-Zhu Fang

As an important post-transcriptional modification, adenosine-to-inosine RNA editing generally occurs in both coding and noncoding RNA transcripts in which adenosines are converted to inosines. Accordingly, the diversification of the transcriptome can be resulted in by this modification. It is significant to accurately identify adenosine-to-inosine editing sites for further understanding their biological functions. Currently, the adenosine-to-inosine editing sites would be determined by experimental methods, unfortunately, it may be costly and time consuming. Furthermore, there are only a few existing computational prediction models in this field. Therefore, the work in this study is starting to develop other computational methods to address these problems. Given an uncharacterized RNA sequence that contains many adenosine resides, can we identify which one of them can be converted to inosine, and which one cannot? To deal with this problem, a novel predictor called iAI-DSAE is proposed in the current study. In fact, there are two key issues to address: one is ‘what feature extraction methods should be adopted to formulate the given sample sequence?’ The other is ‘what classification algorithms should be used to construct the classification model?’ For the former, a 540-dimensional feature vector is extracted to formulate the sample sequence by dinucleotide-based auto-cross covariance, pseudo dinucleotide composition, and nucleotide density methods. For the latter, we use the present more popular method i.e. deep spare autoencoder to construct the classification model. Generally, ACC and MCC are considered as the two of the most important performance indicators of a predictor. In this study, in comparison with those of predictor PAI, they are up 2.46% and 4.14%, respectively. The two other indicators, Sn and Sp, rise at certain degree also. This indicates that our predictor can be as an important complementary tool to identify adenosine-toinosine RNA editing sites. For the convenience of most experimental scientists, an easy-to-use web-server for identifying adenosine-to-inosine editing sites has been established at: http://www.jci-bioinfo.cn/iAI-DSAE, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It is important to identify adenosine-to-inosine editing sites in RNA sequences for the intensive study on RNA function and the development of new medicine. In current study, a novel predictor, called iAI-DSAE, was proposed by using three feature extraction methods including dinucleotidebased auto-cross covariance, pseudo dinucleotide composition and nucleotide density. The jackknife test results of the iAI-DSAE predictor based on deep spare auto-encoder model show that our predictor is more stable and reliable. It has not escaped our notice that the methods proposed in the current paper can be used to solve many other problems in genome analysis.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Bingquan Liu ◽  
Yumeng Liu ◽  
Dong Huang

Recombination presents a nonuniform distribution across the genome. Genomic regions that present relatively higher frequencies of recombination are called hotspots while those with relatively lower frequencies of recombination are recombination coldspots. Therefore, the identification of hotspots/coldspots could provide useful information for the study of the mechanism of recombination. In this study, a new computational predictor called SVM-EL was proposed to identify hotspots/coldspots across the yeast genome. It combined Support Vector Machines (SVMs) and Ensemble Learning (EL) based on three features including basic kmer (Kmer), dinucleotide-based auto-cross covariance (DACC), and pseudo dinucleotide composition (PseDNC). These features are able to incorporate the nucleic acid composition and their order information into the predictor. The proposed SVM-EL achieves an accuracy of 82.89% on a widely used benchmark dataset, which outperforms some related methods.


2015 ◽  
Vol 25 (6) ◽  
pp. 3624-3683
Author(s):  
Chen Wang ◽  
Baisuo Jin ◽  
Z. D. Bai ◽  
K. Krishnan Nair ◽  
Matthew Harding

2014 ◽  
Vol 24 (3) ◽  
pp. 1199-1225 ◽  
Author(s):  
Baisuo Jin ◽  
Chen Wang ◽  
Z. D. Bai ◽  
K. Krishnan Nair ◽  
Matthew Harding

Sign in / Sign up

Export Citation Format

Share Document