pupil plane
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yongxi Zeng ◽  
Yanzhong Yu ◽  
Musheng Chen ◽  
Pinghui Wu ◽  
Han Huang

Abstract Unlike the general optical needle along the optical axis, we propose a method to generate a three-dimensional (3D) array formed by optical needles with prescribed length and polarization direction. Moreover, the geometric model of the created array can be specified. With the aid of antenna array pattern synthesis theory and time reversal technology, a virtual uniform line source (ULS) antenna array arranged regularly near the confocal region of two high numerical apertures objectives is employed to obtain the required illumination in the pupil plane for creating the desired focal fields. Numerical results demonstrate that there is a one-to-one correspondence between the focal field and the virtual ULS antenna array elements. The length and polarization direction of the optical needles depends on the length and spatial direction of the virtual ULS antenna. The peculiarities of the focal field array, such as the polarization, length, number, spatial position and array structure, can be customized according to application requirements. The created optical needle array can be used for such application as 3D synchronous particle acceleration and manipulation, 3D parallel fabrication.


2021 ◽  
Author(s):  
Derek Burrell ◽  
Mark Spencer ◽  
Noah Van Zandt ◽  
Ronald Driggers
Keyword(s):  

2021 ◽  
Vol 647 ◽  
pp. A59
Author(s):  
◽  
R. Abuter ◽  
A. Amorim ◽  
M. Bauböck ◽  
J. P. Berger ◽  
...  

The GRAVITY instrument on the ESO VLTI pioneers the field of high-precision near-infrared interferometry by providing astrometry at the 10−100 μas level. Measurements at this high precision crucially depend on the control of systematic effects. We investigate how aberrations introduced by small optical imperfections along the path from the telescope to the detector affect the astrometry. We develop an analytical model that describes the effect of these aberrations on the measurement of complex visibilities. Our formalism accounts for pupil-plane and focal-plane aberrations, as well as for the interplay between static and turbulent aberrations, and it successfully reproduces calibration measurements of a binary star. The Galactic Center observations with GRAVITY in 2017 and 2018, when both Sgr A* and the star S2 were targeted in a single fiber pointing, are affected by these aberrations at a level lower than 0.5 mas. Removal of these effects brings the measurement in harmony with the dual-beam observations of 2019 and 2020, which are not affected by these aberrations. This also resolves the small systematic discrepancies between the derived distance R0 to the Galactic Center that were reported previously.


2020 ◽  
Vol 28 (18) ◽  
pp. 26407
Author(s):  
Zongyue Cheng ◽  
Hehai Jiang ◽  
Wenbiao Gan ◽  
Meng Cui

2020 ◽  
Vol 638 ◽  
pp. A117 ◽  
Author(s):  
A. Potier ◽  
R. Galicher ◽  
P. Baudoz ◽  
E. Huby ◽  
J. Milli ◽  
...  

Context. Since 1995 and the first discovery of an exoplanet orbiting a main-sequence star, 4000 exoplanets have been discovered using several techniques. However, only a few of these exoplanets were detected through direct imaging. Indeed, the imaging of circumstellar environments requires high-contrast imaging facilities and accurate control of wavefront aberrations. Ground-based planet imagers such as VLT/SPHERE or Gemini/GPI have already demonstrated great performance. However, their limit of detection is hampered by suboptimal correction of aberrations unseen by adaptive optics (AO). Aims. Instead of focusing on the phase minimization of the pupil plane as in standard AO, we aim to directly minimize the stellar residual light in the SPHERE science camera behind the coronagraph to improve the contrast as close as possible to the inner working angle. Methods. We propose a dark hole (DH) strategy optimized for SPHERE. We used a numerical simulation to predict the global improvement of such a strategy on the overall performance of the instrument for different AO capabilities and particularly in the context of a SPHERE upgrade. Then, we tested our algorithm on the internal source with the AO in closed loop. Results. We demonstrate that our DH strategy can correct for aberrations of phase and amplitude. Moreover, this approach has the ability to strongly reduce the diffraction pattern induced by the telescope pupil and the coronagraph, unlike methods operating at the pupil plane. Our strategy enables us to reach a contrast of 5e−7 at 150 mas from the optical axis in a few minutes using the SPHERE internal source. This experiment establishes the grounds for implementing the algorithm on sky in the near future.


2020 ◽  
Vol 59 (08) ◽  
pp. 1
Author(s):  
Steven M. Zuraski ◽  
Elizabeth Beecher ◽  
Jack E. McCrae ◽  
Steven T. Fiorino

2020 ◽  
Vol 635 ◽  
pp. A55 ◽  
Author(s):  
E. H. Por ◽  
S. Y. Haffert

Context. The recent discovery of an Earth-mass exoplanet around the nearby star Proxima Centauri provides a prime target for the search for life on planets outside our solar system. Atmospheric characterization of these planets has been proposed by blocking the starlight with a stellar coronagraph and using a high-resolution spectrograph to search for reflected starlight off the planet. Aims. Due to the large flux ratio and small angular separation between Proxima b and its host star (≲10−7 and ≲2.2λ/D respectively; at 750 nm for an 8 m-class telescope) the coronagraph requires high starlight suppression at extremely-low inner working angles. Additionally, it must operate over a broad spectral bandwidth and under residual telescope vibrations. This allows for efficient use of spectroscopic post-processing techniques. We aim to find the global optimum of an integrated coronagraphic integral-field spectrograph. Methods. We present the Single-mode Complex Amplitude Refinement (SCAR) coronagraph that uses a microlens-fed single-mode fiber array in the focal plane downstream from a pupil-plane phase plate. The mode-filtering property of the single-mode fibers allows for the nulling of starlight on the fibers. The phase pattern in the pupil plane is specifically designed to take advantage of this mode-filtering capability. Second-order nulling on the fibers expands the spectral bandwidth and decreases the tip-tilt sensitivity of the coronagraph. Results. The SCAR coronagraph has a low inner working angle (∼1λ/D) at a contrast of < 3 × 10−5 for the six fibers surrounding the star using a sufficiently-good adaptive optics system. It can operate over broad spectral bandwidths (∼20%) and delivers high throughput (> 50% including fiber injection losses). Additionally, it is robust against tip-tilt errors (∼0.1λ/D rms). We present SCAR designs for both an unobstructed and a VLT-like pupil. Conclusions. The SCAR coronagraph is a promising candidate for exoplanet detection and characterization around nearby stars using current high-resolution imaging instruments.


Sign in / Sign up

Export Citation Format

Share Document