debonding detection
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 31)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Assunta Sorrentino ◽  
Fulvio Romano ◽  
Angelo De Fenza

Purpose The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on high frequency sensors/actuators system simulation and the application of elliptical triangulation (ET) and probability ellipse (PE) methods as damage detector. Numerical and experimental results on small-scale stiffened panels made of carbon fiber-reinforced plastic material are discussed. Design/methodology/approach The damage detection methodology is based on high frequency sensors/actuators piezoceramics system enabling the ET and the PE methods. The approach is based on ultrasonic guided waves propagation measurement and simulation within the structure and perturbations induced by debonding or impact damage that affect the signal characteristics. Findings The work is focused on debonding detection via test and simulations and calculation of damage indexes (DIs). The ET and PE methodologies have demonstrated the link between the DIs and debonding enabling the identification of position and growth of the damage. Originality/value The debonding between two structural elements caused in manufacturing or in-service is very difficult to detect, especially when the components are in low accessibility areas. This criticality, together with the uncertainty of long-term adhesive performance and the inability to continuously assess the debonding condition, induces the aircrafts’ manufacturers to pursuit ultraconservative design approach, with in turn an increment in final weight of these parts. The aim of this research’s activity is to demonstrate the effectiveness of the proposed methodology and the robustness of the structural health monitoring system to detect debonding in a typical aeronautical structural joint.


2021 ◽  
Vol 11 (13) ◽  
pp. 6239
Author(s):  
Gaoran Guo ◽  
Junfang Wang ◽  
Bowen Du ◽  
Yanliang Du

China Railway Track System (CRTS)-II-slab ballastless track is a new type of track structure, and its interlayer connection state is considerably important for the operation safety and ride comfort of high-speed trains. However, the location and multiple influencing factors of interlayer debonding lead to difficulties in monitoring and identification. Here, the research on the design and application of a monitoring scheme that facilitates interlayer debonding detection of ballastless track and an effective indicator for debonding identification and assessment is proposed. The results show that on-site monitoring can effectively capture the vibration signals caused by train vibration and interlayer debonding. The features of the data acquired in the situations with and without interlayer debonding are compared after instantaneous baseline validation. Some significant features capable of obviously differentiating a debonding state from the normal state are identified. Furthermore, a new indicator, combining multiple debonding-sensitive features by similarity-based weights normalizing the initial difference between mutual instantaneous baselines, is developed to support rational and comprehensive assessment quantitatively. The contribution of this study includes the development and application of an interlay-debonding monitoring scheme, the establishment of an effective-feature pool, and the proposal of the similarity-based indicator, thereby laying a good foundation for debonding identification of ballastless track.


2021 ◽  
Vol 40 (2) ◽  
Author(s):  
Yun-Lin Liu ◽  
Zhihao Liu ◽  
Siu-Kai Lai ◽  
Li-Zi Luo ◽  
Jian-Guo Dai

2020 ◽  
Author(s):  
Shreedhar Savant Todkar ◽  
Rakeeb Jaufer ◽  
Vincent Baltazart ◽  
Cyrille Fauchard ◽  
Amine Ihamouten

Sign in / Sign up

Export Citation Format

Share Document