Debonding detection in CFRP-reinforced steel structures using anti-symmetrical guided waves

2020 ◽  
Vol 253 ◽  
pp. 112813 ◽  
Author(s):  
Jingrong Li ◽  
Ye Lu ◽  
Yu Fung Lee
2019 ◽  
Vol 28 (4) ◽  
pp. 045020 ◽  
Author(s):  
Paritosh Giri ◽  
Sergey Kharkovsky ◽  
Xinqun Zhu ◽  
Simon Martin Clark ◽  
Bijan Samali

2018 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Amir Asgharzadeh ◽  
Michael Raupach

Carbon textiles as anode material for cathodic corrosion protection (CP) have been used in several reinforced steel structures. However, experience with durability is limited. To date, various influencing factors have been discovered and systematic tests on different carbon textiles with different impregnation materials in various environmental media have been carried out and considered the degradation of the impregnation materials. In this work the boundary potentials are determined at which the impregnation and sizing is destroyed under anodic polarization and the damage mechanisms are described.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Assunta Sorrentino ◽  
Fulvio Romano ◽  
Angelo De Fenza

Purpose The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on high frequency sensors/actuators system simulation and the application of elliptical triangulation (ET) and probability ellipse (PE) methods as damage detector. Numerical and experimental results on small-scale stiffened panels made of carbon fiber-reinforced plastic material are discussed. Design/methodology/approach The damage detection methodology is based on high frequency sensors/actuators piezoceramics system enabling the ET and the PE methods. The approach is based on ultrasonic guided waves propagation measurement and simulation within the structure and perturbations induced by debonding or impact damage that affect the signal characteristics. Findings The work is focused on debonding detection via test and simulations and calculation of damage indexes (DIs). The ET and PE methodologies have demonstrated the link between the DIs and debonding enabling the identification of position and growth of the damage. Originality/value The debonding between two structural elements caused in manufacturing or in-service is very difficult to detect, especially when the components are in low accessibility areas. This criticality, together with the uncertainty of long-term adhesive performance and the inability to continuously assess the debonding condition, induces the aircrafts’ manufacturers to pursuit ultraconservative design approach, with in turn an increment in final weight of these parts. The aim of this research’s activity is to demonstrate the effectiveness of the proposed methodology and the robustness of the structural health monitoring system to detect debonding in a typical aeronautical structural joint.


2018 ◽  
Vol 30 (9) ◽  
pp. 1306-1317 ◽  
Author(s):  
Lingyu Yu ◽  
Zhenhua Tian ◽  
Xiaopeng Li ◽  
Rui Zhu ◽  
Guoliang Huang

Ultrasonic guided waves have proven to be an effective and efficient method for damage detection and quantification in various plate-like structures. In honeycomb sandwich structures, wave propagation and interaction with typical defects such as hidden debonding damage are complicated; hence, the detection of defects using guided waves remains a challenging problem. The work presented in this article investigates the interaction of low-frequency guided waves with core–skin debonding damage in aluminum core honeycomb sandwich structures using finite element simulations. Due to debonding damage, the waves propagating in the debonded skin panel change to fundamental antisymmetric Lamb waves with different wavenumber values. Exploiting this mechanism, experimental inspection using a non-contact laser Doppler vibrometer was performed to acquire wavefield data from pristine and debonded structures. The data were then processed and analyzed with two wavefield data–based imaging approaches, the filter reconstruction imaging and the spatial wavenumber imaging. Both approaches can clearly indicate the presence, location, and size of the debonding in the structures, thus proving to be effective methods for debonding detection and quantification for honeycomb sandwich structures.


2019 ◽  
Vol 28 (11) ◽  
pp. 115001 ◽  
Author(s):  
Hua-Ping Wang ◽  
Yi-Qing Ni ◽  
Jian-Guo Dai ◽  
Mao-Dan Yuan

Author(s):  
Minos E Kypriadis ◽  
Elias P Bilalis ◽  
Nicholas G Tsouvalis

The use of composite materials patches for the reinforcement of steel structures attracts particular interest. Due to their high strength, light weight, and high fatigue and corrosion resistance, composite patches represent a versatile reinforcement solution. In this paper, the reinforcement of steel beams with CFRP patches is examined. Large scale tests of “H” and “square hollow” cross section steel beams are conducted. The beams are reinforced with CFRP patches, investigating the effect of the thickness and the length of the patch, and the type of the cohesive joint. All reinforced specimens showed increase of their stiffness and their maximum load capacity. Furthermore, advanced finite element models are developed for the simulation of the mechanical behavior of the reinforced steel beams. FE results relate very well to the experimental ones for most of the measured magnitudes, thus verifying the reliability of the developed models in estimating stiffness, yield load and maximum load capacity of the beams.


Author(s):  
Jay Kumar Shah ◽  
Abhijit Mukherjee

Abstract Steel structures with bolted joints are easily dismantled and repurposed. However, maintaining joint integrity is a challenge. This paper reports a non-destructive methodology to monitor steel bolted joints. Piezoelectric ceramic patches have been surface bonded in the joint for transmission and reception of guided ultrasonic waves. Both single and multiple bolted joints have been investigated. It has been demonstrated that the variation in acoustic impedance due at the bolt interface can be discerned and calibrated with bolt torque level. The recorded reflections from interfaces are used as inputs for a newly developed imaging algorithm. The proposed method has the potential to be a reference-free and fully automated method.


Sign in / Sign up

Export Citation Format

Share Document