scholarly journals Dimensions of Sets Which Uniformly Avoid Arithmetic Progressions

2017 ◽  
Vol 2019 (14) ◽  
pp. 4419-4430 ◽  
Author(s):  
Jonathan M Fraser ◽  
Kota Saito ◽  
Han Yu

AbstractWe provide estimates for the dimensions of sets in $\mathbb{R}$ which uniformly avoid finite arithmetic progressions (APs). More precisely, we say $F$ uniformly avoids APs of length $k \geq 3$ if there is an $\epsilon>0$ such that one cannot find an AP of length $k$ and gap length $\Delta>0$ inside the $\epsilon \Delta$ neighbourhood of $F$. Our main result is an explicit upper bound for the Assouad (and thus Hausdorff) dimension of such sets in terms of $k$ and $\epsilon$. In the other direction, we provide examples of sets which uniformly avoid APs of a given length but still have relatively large Hausdorff dimension. We also consider higher dimensional analogues of these problems, where APs are replaced with arithmetic patches lying in a hyperplane. As a consequence, we obtain a discretized version of a “reverse Kakeya problem:” we show that if the dimension of a set in $\mathbb{R}^d$ is sufficiently large, then it closely approximates APs in every direction.

10.37236/4851 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Kayleigh K. Hyde ◽  
Bjørn Kjos-Hanssen

Shallit and Wang studied deterministic automatic complexity of words.  They showed that the automatic Hausdorff dimension $I(\mathbf t)$ of the infinite Thue word satisfies $1/3\le I(\mathbf t)\le 1/2$.   We improve that result by showing that $I(\mathbf t)= 1/2$.  We prove that the nondeterministic automatic complexity $A_N(x)$ of a word $x$ of length $n$ is bounded by $b(n):=\lfloor n/2\rfloor + 1$.  This enables us to define the complexity deficiency $D(x)=b(n)-A_N(x)$.  If $x$ is square-free then $D(x)=0$. If $x$ is almost square-free in the sense of Fraenkel and Simpson, or if $x$ is a overlap-free binary word such as the infinite Thue--Morse word, then $D(x)\le 1$.  On the other hand, there is no constant upper bound on $D$ for overlap-free words over a ternary alphabet, nor for cube-free words over a binary alphabet.The decision problem whether $D(x)\ge d$ for given $x$, $d$ belongs to $\mathrm{NP}\cap \mathrm{E}$.


2019 ◽  
Vol 40 (9) ◽  
pp. 2482-2514
Author(s):  
CHARLENE KALLE ◽  
DERONG KONG ◽  
NIELS LANGEVELD ◽  
WENXIA LI

For $\unicode[STIX]{x1D6FD}\in (1,2]$ the $\unicode[STIX]{x1D6FD}$-transformation $T_{\unicode[STIX]{x1D6FD}}:[0,1)\rightarrow [0,1)$ is defined by $T_{\unicode[STIX]{x1D6FD}}(x)=\unicode[STIX]{x1D6FD}x\hspace{0.6em}({\rm mod}\hspace{0.2em}1)$. For $t\in [0,1)$ let $K_{\unicode[STIX]{x1D6FD}}(t)$ be the survivor set of $T_{\unicode[STIX]{x1D6FD}}$ with hole $(0,t)$ given by $$\begin{eqnarray}K_{\unicode[STIX]{x1D6FD}}(t):=\{x\in [0,1):T_{\unicode[STIX]{x1D6FD}}^{n}(x)\not \in (0,t)\text{ for all }n\geq 0\}.\end{eqnarray}$$ In this paper we characterize the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ of all parameters $t\in [0,1)$ for which the set-valued function $t\mapsto K_{\unicode[STIX]{x1D6FD}}(t)$ is not locally constant. We show that $E_{\unicode[STIX]{x1D6FD}}$ is a Lebesgue null set of full Hausdorff dimension for all $\unicode[STIX]{x1D6FD}\in (1,2)$. We prove that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$ the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ contains infinitely many isolated points and infinitely many accumulation points arbitrarily close to zero. On the other hand, we show that the set of $\unicode[STIX]{x1D6FD}\in (1,2)$ for which $E_{\unicode[STIX]{x1D6FD}}$ contains no isolated points has zero Hausdorff dimension. These results contrast with the situation for $E_{2}$, the bifurcation set of the doubling map. Finally, we give for each $\unicode[STIX]{x1D6FD}\in (1,2)$ a lower and an upper bound for the value $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$ such that the Hausdorff dimension of $K_{\unicode[STIX]{x1D6FD}}(t)$ is positive if and only if $t<\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$. We show that $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}\leq 1-(1/\unicode[STIX]{x1D6FD})$ for all $\unicode[STIX]{x1D6FD}\in (1,2)$.


10.37236/1758 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Doerr ◽  
Anand Srivastav ◽  
Petra Wehr

We determine the combinatorial discrepancy of the hypergraph ${\cal H}$ of cartesian products of $d$ arithmetic progressions in the $[N]^d$–lattice ($[N] = \{0,1,\ldots,N-1\}$). The study of such higher dimensional arithmetic progressions is motivated by a multi-dimensional version of van der Waerden's theorem, namely the Gallai-theorem (1933). We solve the discrepancy problem for $d$–dimensional arithmetic progressions by proving ${\rm disc}({\cal H}) = \Theta(N^{d/4})$ for every fixed integer $d \ge 1$. This extends the famous lower bound of $\Omega(N^{1/4})$ of Roth (1964) and the matching upper bound $O(N^{1/4})$ of Matoušek and Spencer (1996) from $d=1$ to arbitrary, fixed $d$. To establish the lower bound we use harmonic analysis on locally compact abelian groups. For the upper bound a product coloring arising from the theorem of Matoušek and Spencer is sufficient. We also regard some special cases, e.g., symmetric arithmetic progressions and infinite arithmetic progressions.


2018 ◽  
Vol 19 (2) ◽  
pp. 421-450 ◽  
Author(s):  
Stephen Scully

Let $q$ be an anisotropic quadratic form defined over a general field $F$. In this article, we formulate a new upper bound for the isotropy index of $q$ after scalar extension to the function field of an arbitrary quadric. On the one hand, this bound offers a refinement of an important bound established in earlier work of Karpenko–Merkurjev and Totaro; on the other hand, it is a direct generalization of Karpenko’s theorem on the possible values of the first higher isotropy index. We prove its validity in two key cases: (i) the case where $\text{char}(F)\neq 2$, and (ii) the case where $\text{char}(F)=2$ and $q$ is quasilinear (i.e., diagonalizable). The two cases are treated separately using completely different approaches, the first being algebraic–geometric, and the second being purely algebraic.


2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850184 ◽  
Author(s):  
Ramesh Prasad Panda ◽  
K. V. Krishna

The power graph of a group [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices are adjacent if one is a power of the other. This paper investigates the minimal separating sets of power graphs of finite groups. For power graphs of finite cyclic groups, certain minimal separating sets are obtained. Consequently, a sharp upper bound for their connectivity is supplied. Further, the components of proper power graphs of [Formula: see text]-groups are studied. In particular, the number of components of that of abelian [Formula: see text]-groups are determined.


1991 ◽  
Vol 113 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Hisatsune ◽  
T. Tabata ◽  
S. Masaki

Axisymmetric deformation of anisotropic porous materials caused by geometry of pores or by distribution of pores is analyzed. Two models of the materials are proposed: one consists of spherical cells each of which has a concentric ellipsoidal pore; and the other consists of ellipsoidal cells each of which has a concentric spherical pore. The velocity field in the matrix is assumed and the upper bound approach is attempted. Yield criteria are expressed as ellipses on the σm σ3 plane which are longer in longitudinal direction with increasing anisotropy and smaller with increasing volume fraction of the pore. Furthermore, the axes rotate about the origin at an angle α from the σm-axis, while the axis for isotropic porous materials is on the σm-axis.


2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


1992 ◽  
Vol 07 (15) ◽  
pp. 3623-3637 ◽  
Author(s):  
R. FOOT ◽  
G. C. JOSHI

It is shown that the sequence of Jordan algebras [Formula: see text], whose elements are the 3 × 3 Hermitian matrices over the division algebras ℝ, [Formula: see text], ℚ and [Formula: see text], can be associated with the bosonic string as well as the superstring. The construction reveals that the space–time symmetries of the first-quantized bosonic string and superstring actions can be related. The bosonic string and the superstring are associated with the exceptional Jordan algebra while the other Jordan algebras in the [Formula: see text] sequence can be related to parastring theories. We then proceed to further investigate a connection between the symmetries of supersymmetric Lagrangians and the transformations associated with the structure group of [Formula: see text]. The N = 1 on-shell supersymmetric Lagrangians in 3, 4 and 6-dimensions with a spin 0 field and a spin 1/2 field are incorporated within the Jordan-algebraic framework. We also make some remarks concerning a possible role for the division algebras in the construction of higher-dimensional extended objects.


Author(s):  
Glyn Harman

We write ‖x‖ to denote the least distance from x to an integer, and write p for a prime variable. Duffin and Schaeffer [l] showed that for almost all real α the inequalityhas infinitely many solutions if and only ifdiverges. Thus f(x) = (x log log (10x))−1 is a suitable choice to obtain infinitely many solutions for almost all α. It has been shown [2] that for all real irrational α there are infinitely many solutions to (1) with f(p) = p−/13. We will show elsewhere that the exponent can be increased to 7/22. A very strong result on primes in arithmetic progressions (far stronger than anything within reach at the present time) would lead to an improvement on this result. On the other hand, it is very easy to find irrational a such that no convergent to its continued fraction expansion has prime denominator (for example (45– √10)/186 does not even have a square-free denominator in its continued fraction expansion, since the denominators are alternately divisible by 4 and 9).


Sign in / Sign up

Export Citation Format

Share Document