scholarly journals The New Modification of the Approximating Functions Method for Cloud Computing

Author(s):  
Denis Zolotariov ◽  

Abstract The approach for building cloud-ready fault-tolerant calculations by approximating functions method, which is an analytical-numerical part of Volterra integral equation method for solving 1D+T nonlinear electromagnetic problems, is presented. The solving process of the original algorithm of the method is modified: it is broken down into the sequential chain of stages with a fixed number of sequential or parallel steps, each of which is built in a fault-tolerant manner and saves execution results in fault-tolerant storage for high availability. This economizes RAM and other computer resources and does not damage the calculated results in the case of a failure, and allows stopping and starting the calculations easily after manual or accidental shutdown. Also, the proposed algorithm has self-healing and data deduplication for cases of corrupted saved results. The presented approach is universal and does not depend on the type of medium or the initial signal. Also, it does not violate the natural description of non-stationary and nonlinear features, the unified definition of the inner and outer problems, as well as the inclusion of the initial and boundary conditions in the same equation as the original approximating functions method. The developed approach stress-tested on the known problems, stability checked and errors compared.

Author(s):  
Denis Zolotariov ◽  

The approach for building cloud-ready fault-tolerant calculations by approximating functions method, which is an analytical-numerical part of Volterra integral equation method for solving 1D+T nonlinear electromagnetic problems, is presented. The solving process of the original algorithm of the method is modified: it is broken down into the sequential chain of stages with a fixed number of sequential or parallel steps, each of which is built in a fault-tolerant manner and saves execution results in fault-tolerant storage for high availability. This economizes RAM and other computer resources and does not damage the calculated results in the case of a failure, and allows stopping and starting the calculations easily after manual or accidental shutdown. Also, the proposed algorithm has self-healing and data deduplication for cases of corrupted saved results. The presented approach is universal and does not depend on the type of medium or the initial signal. Also, it does not violate the natural description of non-stationary and nonlinear features, the unified definition of the inner and outer problems, as well as the inclusion of the initial and boundary conditions in the same equation as the original approximating functions method. The developed approach stress-tested on the known problems, stability checked and errors compared.


Author(s):  
I.V. Asharina

This three-part paper analyzes existing approaches and methods of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), identifies and provides rationale for a list of issues to be solved. We present the concept of fault tolerance proposed by A. Avizienis, explicate its dissimilarity from the modern concept and the reason for its inapplicability with regard to modern distributed multicomputer systems. We justify the necessity to refine the definition of fault tolerance approved by the State Standards, as well as the necessity to specify three input parameters to be taken into account in the DMCS design methods: permitted fault models, permitted multiplicity of faults, permitted fault sequence capabilities. We formulate the questions that must be answered in order to design a truly reliable, fault-tolerant system and consider the application areas of the failure- and fault-tolerant control systems for complex network and distributed objects. System, functional, and test diagnostics serve as the basis for building unattended failure- and fault-tolerant systems. The concept of self-managed degradation (with the DMCS eventually proceeding to a safe shutdown at a critical level of degradation) is a means to increase the DMCS active life. We consider the issues related to the diagnosis of multiple faults and present the main differences in ensuring fault tolerance between systems with broadcast communication channels and systems with point-to-point communication channels. The first part of the work mainly deals with the analysis of existing approaches and methods of organizing failure- and fault-tolerant computing in DMCS and the definition of the concept of fault-tolerance.


1993 ◽  
Vol 41 (11) ◽  
pp. 1677-1686 ◽  
Author(s):  
E. Ayanoglu ◽  
Chih-Lin I ◽  
R.D. Gitlin ◽  
J.E. Mazo

Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. F123-F137 ◽  
Author(s):  
M. Zaslavsky ◽  
V. Druskin ◽  
S. Davydycheva ◽  
L. Knizhnerman ◽  
A. Abubakar ◽  
...  

The modeling of the controlled-source electromagnetic (CSEM) and single-well and crosswell electromagnetic (EM) configurations requires fine gridding to take into account the 3D nature of the geometries encountered in these applications that include geological structures with complicated shapes and exhibiting large variations in conductivities such as the seafloor bathymetry, the land topography, and targets with complex geometries and large contrasts in conductivities. Such problems significantly increase the computational cost of the conventional finite-difference (FD) approaches mainly due to the large condition numbers of the corresponding linear systems. To handle these problems, we employ a volume integral equation (IE) approach to arrive at an effective preconditioning operator for our FD solver. We refer to this new hybrid algorithm as the finite-difference integral equation method (FDIE). This FDIE preconditioning operator is divergence free and is based on a magnetic field formulation. Similar to the Lippman-Schwinger IE method, this scheme allows us to use a background elimination approach to reduce the computational domain, resulting in a smaller size stiffness matrix. Furthermore, it yields a linear system whose condition number is close to that of the conventional Lippman-Schwinger IE approach, significantly reducing the condition number of the stiffness matrix of the FD solver. Moreover, the FD framework allows us to substitute convolution operations by the inversion of banded matrices, which significantly reduces the computational cost per iteration of the hybrid method compared to the standard IE approaches. Also, well-established FD homogenization and optimal gridding algorithms make the FDIE more appropriate for the discretization of strongly inhomogeneous media. Some numerical studies are presented to illustrate the accuracy and effectiveness of the presented solver for CSEM, single-well, and crosswell EM applications.


2013 ◽  
Vol 26 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Z. Stamenkovic ◽  
V. Petrovic ◽  
G. Schoof

The paper presents fault-tolerant CMOS ASICs which are immune to the single event upsets (SEU), the single event transients (SET), and the single event latchup (SEL). Triple and double modular redundant (TMR and DMR) circuits and SEL protection switches (SPS) make the base for a modified fault-tolerant ASIC design flow. The proposed design flow requires the standard design automation tools and a few additional steps during logic synthesis and layout generation. An extra step is necessary to generate the redundant design net-list including voters. Other two extra steps (definition of the redundant power domains and placement of the SPS) have to be performed in the layout phase. The concept has been proven by design and implementation of the two digital circuits: shift-register and synchronous counter.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chi-Chun Chen ◽  
Jian-Hong Wang ◽  
Hsing-Wen Wang ◽  
Jie Zhang

PurposeThis research proposes an innovative fault-tolerant media content list management technology applied to the smart robot domain.Design/methodology/approachA fault tolerant Content List Management Unit (CLMU) for real-time streaming systems focusing on smart robot claw machines is proposed to synchronize and manage the hyperlink stored on media servers. The fault-tolerant mechanism is realized by the self-healing method. A media server allows exchanging the hyperlink within the network through the CLMU mechanism.FindingsInternet users can access the current multimedia information, and the multimedia information list can be rearranged appropriately. Furthermore, the service of the proposed multimedia system should be uninterrupted even when the master media server fails. Therefore, one of the slave media servers enables the Content List Service (CLS) of the proposed CLMU and replaces the defunct master media server.Originality/valueThe recovery time is less than 1.5 seconds. The multimedia transmission is not interrupted while any one of the media servers keeps functioning. The proposed method can serve to stabilize the system of media servers in a smart robot domain.


Author(s):  
Luciano Mescia ◽  
Pietro Bia ◽  
Diego Caratelli ◽  
Johan Gielis

The chapter will describe the potential of the swarm intelligence and in particular quantum PSO-based algorithm, to solve complicated electromagnetic problems. This task is accomplished through addressing the design and analysis challenges of some key real-world problems. A detailed definition of the conventional PSO and its quantum-inspired version are presented and compared in terms of accuracy and computational burden. Some theoretical discussions concerning the convergence issues and a sensitivity analysis on the parameters influencing the stochastic process are reported.


Sign in / Sign up

Export Citation Format

Share Document