isothermal assay
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 801
Author(s):  
Olympia E. Anastasiou ◽  
Caroline Holtkamp ◽  
Miriam Schäfer ◽  
Frieda Schön ◽  
Anna Maria Eis-Hübinger ◽  
...  

The availability of simple SARS-CoV-2 detection methods is crucial to contain the COVID-19 pandemic. This study examined whether a commercial LAMP assay can reliably detect SARS-CoV-2 genomes directly in respiratory samples without having to extract nucleic acids (NA) beforehand. Nasopharyngeal swabs (NPS, n = 220) were tested by real-time reverse transcription (RT)-PCR and with the LAMP assay. For RT-PCR, NA were investigated. For LAMP, NA from 26 NPS in viral transport medium (VTM) were tested. The other 194 NPS were analyzed directly without prior NA extraction (140 samples in VTM; 54 dry swab samples stirred in phosphate buffered saline). Ten NPS were tested directly by LAMP using a sous-vide cooking unit. The isothermal assay demonstrated excellent specificity (100%) but moderate sensitivity (68.8%), with a positive predictive value of 1 and a negative predictive value of 0.65 for direct testing of NPS in VTM. The use of dry swabs, even without NA extraction, improved the analytical sensitivity; up to 6% of samples showed signs of inhibition. LAMP could be performed successfully with a sous-vide cooking unit. This technique is very fast, requires little laboratory resources, and can replace rapid antigen tests or verify reactive rapid tests on-site.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S42-S43
Author(s):  
Rose Lee ◽  
Helena De Puig Guixe ◽  
Jeffrey Dvorin ◽  
James Collins

Abstract Background Malaria control and eradication have been hampered by asymptomatic carriage which serves as a parasite reservoir. Low-density infections (< 100 parasites/microliter) frequently fall below the limit of detection (LOD) of microscopy and rapid diagnostic tests (RDT) which are antigen-based tests. Molecular methods such as polymerase chain reaction are capable of higher sensitivity yet remain impractical for resource-limited settings. We describe development of an isothermal assay using the nucleic acid detection platform SHERLOCK (Specific High-Sensitivity Enzymatic Reporter UnLOCKing), which may also be increasingly important as there has been rising detection of histidine-rich protein 2 (HRP2) gene deletions in Plasmodium spp. HRP2 is the most commonly used antigen in RDTs and deletion of this gene would render many RDTs obsolete. Methods SHERLOCK leverages the endonucleases of CRISPR-associated microbial adaptive immunity. Cas12a is an RNA-guided, DNA-cleaving enzyme, which can be programmed with guide RNAs to cleave nontarget reporter ssDNA. We exploit the nonspecific degradation of labeled ssDNA to detect the presence of the dsDNA target that activated Cas12a (Figure 1). Recombinase polymerase amplification (RPA) coupled with Cas12a detection enables a lower LOD. Plasmodium falciparum whole genomic DNA was compared with parasites cultured in red blood cells (RBCs) with known parasitemia and boiled at 95°C for 5 minutes for lysis of RBCs/parasites then diluted 1:2.5 to prevent solidification. Results This SHERLOCK assay detected simulated Plasmodium falciparum infection at attomolar LODs when applied to whole genomic DNA and simulated samples of infected RBCs spiked into whole blood. The genomic assay detected down to 0.2 parasites/microliter and the simulated sample detected to 10 parasites/microliter in the final reaction volume. In comparison, LODs from the initial input volume was 5aM and 250aM, respectively (Figure 2). Conclusion We demonstrate an isothermal nucleic acid detection platform capable of diagnosis in 60 minutes in a one-pot assay requiring minimal sample preparation and reaching an LOD recommended by the WHO for malaria eradication. In summary, we illustrate the utility of the SHERLOCK platform in application to malaria and global health. Disclosures All Authors: No reported Disclosures.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 714 ◽  
Author(s):  
Sanchita Bhadra ◽  
Miguel Saldaña ◽  
Hannah Han ◽  
Grant Hughes ◽  
Andrew Ellington

We have developed a generalizable “smart molecular diagnostic” capable of accurate point-of-care (POC) detection of variable nucleic acid targets. Our isothermal assay relies on multiplex execution of four loop-mediated isothermal amplification reactions, with primers that are degenerate and redundant, thereby increasing the breadth of targets while reducing the probability of amplification failure. An easy-to-read visual answer is computed directly by a multi-input Boolean OR logic gate (gate output is true if either one or more gate inputs is true) signal transducer that uses degenerate strand exchange probes to assess any combination of amplicons. We demonstrate our methodology by using the same assay to detect divergent Asian and African lineages of the evolving Zika virus (ZIKV), while maintaining selectivity against non-target viruses. Direct analysis of biological specimens proved possible, with crudely macerated ZIKV-infected Aedes aegypti mosquitoes being identified with 100% specificity and sensitivity. The ease-of-use with minimal instrumentation, broad programmability, and built-in fail-safe reliability make our smart molecular diagnostic attractive for POC use.


2018 ◽  
Vol 108 (12) ◽  
pp. 1386-1394 ◽  
Author(s):  
Alyssa Burkhardt ◽  
Marina L. Ramon ◽  
Brett Smith ◽  
Steven T. Koike ◽  
Frank Martin

Macrophomina phaseolina is a broad-host-range fungus that shows some degree of host preference on strawberry, and causes symptoms that include crown rot and root rot. Recently, this pathogen has affected strawberry production as fumigation practices have changed, leaving many growers in California and around the world in need of accurate, rapid diagnostic tools for M. phaseolina in soil and infected plants. This study uses next-generation sequencing and comparative genomics to identify a locus that is unique to isolates within a main genotype shared by a majority of isolates that infect strawberry. This locus was used to develop a quantitative single-tube nested TaqMan polymerase chain reaction assay which is able to quantify as little as 2 to 3 microsclerotia/g of soil with 100% genotype specificity. An isothermal assay using recombinase polymerase amplification was developed from the same locus and has been validated on over 200 infected strawberry plants with a diagnostic sensitivity of 93% and a diagnostic specificity of 99%. Together, this work demonstrates the value of using new approaches to identify loci for detection and provides valuable diagnostic tools that can be used to monitor soil and strawberry plant samples for M. phaseolina.


2018 ◽  
Author(s):  
Sanchita Bhadra ◽  
Miguel A. Saldaña ◽  
Hannah Grace Han ◽  
Grant L. Hughes ◽  
Andrew D. Ellington

AbstractWe have developed a generalizable ‘smart molecular diagnostic’ capable of accurate point-of-care (POC) detection of variable nucleic acid targets. Our one-pot isothermal assay relies on multiplex execution of four loop-mediated isothermal amplification reactions, with primers that are degenerate and redundant, thereby increasing the breadth of targets while reducing the probability of amplification failure. An easy-to-read visual answer is computed directly by a multi-input Boolean OR gate signal transducer that uses degenerate strand exchange probes to assess any combination of amplicons. We demonstrate our platform by using the same assay to detect divergent Asian and African lineages of the evolving Zika virus (ZIKV), while maintaining selectivity against non-target viruses. Direct analysis of biological specimens proved possible, with 20 virions / µl being directly detected in human saliva within 90 minutes, and crudely macerated ZIKV-infected Aedes aegypti mosquitoes being identified with 100% specificity and sensitivity. The ease-of-use with minimal instrumentation, broad programmability, and built-in fail-safe reliability make our smart molecular diagnostic attractive for POC use.


2018 ◽  
Vol 40 (3) ◽  
pp. 408-416 ◽  
Author(s):  
Andres Reyes Gaige ◽  
Jeremiah K. S. Dung ◽  
Jerry E. Weiland
Keyword(s):  

2017 ◽  
Vol 198 ◽  
pp. 213-220 ◽  
Author(s):  
Robert D. Stedtfeld ◽  
Tiffany M. Stedtfeld ◽  
Hassen Waseem ◽  
Meridith Fitschen-Brown ◽  
Xueping Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document