coiling process
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 1016 ◽  
pp. 429-434
Author(s):  
Eman El-Shenawy ◽  
Hoda Refaiy ◽  
Hoda Nasr El-Din

Multiphase steels consisting of retained austenite and martensite/bainite microstructures such as TRIP, low-temperature-bainite, and Q&P steels are attractive candidates for the new-generation of AHSS. These steels exhibit a remarkable combination of strength and toughness which is essential to meet the objective of weight reduction of engineering-components, while maintaining the compromise of tough-safety requirements. Such good mechanical properties are due to the enhanced work hardening rate caused by austenite-to-martensite transformation during deformation and the strengthening contribution of martensite/bainite. The retained austenite can thermally decompose into more thermodynamically stable phases as a consequence of temperature changes, which is referred to as the thermal stability of retained austenite. TRIP-aided steel is an effective candidate for automotive parts because of safety and weight reduction requirements. The strength–ductility balance of high strength steel sheets can be remarkably improved by using transformation induced plasticity behavior of retained austenite. In manufacturing hot rolled TRIP-aided sheet steels, austenite transforms into bainite during the coiling process. Because black hot coils cool slowly after the coiling process, they are exposed at about 350–450°C for a few hours or days. Therefore, the metastable residual austenite can be decomposed into other phases. This decomposition of residual austenite can produce serious deteriorate of mechanical properties in hot rolled TRIP-aided sheet steels. The present work identified the decomposition behavior and study the thermal stability of retained austenite in the TRIP-aided steel with bainitic/ferrite matrix depending on coiling temperatures and holding times by means of DSC and XRD analysis.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5817
Author(s):  
Adam Skowronek ◽  
Mateusz Morawiec ◽  
Aleksandra Kozłowska ◽  
Wojciech Pakieła

The kinetics of ferritic transformation and the corresponding microstructural evolution in 0.17C-3.1Mn-1.6Al-0.04Nb-0.22Mo-0.22Si medium-Mn steel during isothermal annealing was investigated in dilatometric studies. The material was subjected to thermal and thermo-mechanical treatments aimed at obtaining, by the austenite → ferrite transformation, a sufficient fraction of ferrite to stabilize the retained austenite by C and eventual Mn partitioning. The samples were isothermally held for 5 h in a temperature range from 600 to 750 °C to simulate simplified temperature conditions of an industrial coiling process following hot rolling. Some of the samples were plastically deformed at a temperature of 900 °C before isothermal holding in order to study the effect of hot deformation on the kinetics of phase transformations. After the dilatometric investigations the material was subjected to light and scanning electron microscopy to reveal relationships between the holding temperature, deformation and microstructure evolution. Hardness tests were performed to assess the mechanical behavior. A significant effect of manganese in slowing down diffusional transformations during the cooling of steel was found. The influence of austenite deformation on the kinetics of austenite to ferrite transformation was noted. The plastically deformed samples showed an accelerated start of ferritic transformation and the extension of its range. During dilatometric tests, low-range dynamic ferritic transformation was recorded, which was also confirmed by the microscopic tests.


2020 ◽  
Vol 36 (15) ◽  
pp. 1704-1711
Author(s):  
F. Y. Zhao ◽  
P. Chen ◽  
B. Y. Xu ◽  
Q. Yu ◽  
G. D. Wang ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 738-751
Author(s):  
Y. Prawoto ◽  
S. Manville ◽  
T. Sakai ◽  
L. Lee ◽  
M. Tanaka ◽  
...  

2018 ◽  
Author(s):  
Mami Nomura ◽  
Kohei Atsuji ◽  
Keiko Hirose ◽  
Kogiku Shiba ◽  
Takeshi Nakayama ◽  
...  

ABSTRACTA haptonema is an elongated microtubule-based motile organelle uniquely present in haptophytes. The most notable and rapid movement of a haptonema is “coiling”, which occurs within a few milliseconds following mechanical stimulation in an unknown motor-independent mechanism. Here, we analyzed the coiling process in detail by high-speed filming and showed that haptonema coiling was initiated by left-handed twisting of the haptonema, followed by writhing to form a helix from the distal tip. On recovery from a mechanical stimulus, the helix slowly uncoiled from the proximal region. Electron microscopy showed that the seven microtubules in a haptonema were arranged mostly in parallel but that one of the microtubules often wound around the others in the extended state. The persistence lengths calculated from the curvature of the haptonematal microtubules indicated their unusual flexibility. A microtubule stabilizer, paclitaxel, inhibited coiling and induced right-handed twisting of the haptonema in the absence of Ca2+, suggesting changes in the microtubule surface lattice. Addition of Ca2+ caused bend propagation toward the proximal region. These results indicate that switching microtubule conformation with the aid of Ca2+-binding microtubule-associated proteins is responsible for rapid haptonematal coiling.Summary StatementMicroscopy observations and pharmacological experiments revealed that the rapid coiling of a non-motor microtubule-based motile organelle, the haptonema, is explained by conformational changes of microtubules, including twisting and writhing.


Sign in / Sign up

Export Citation Format

Share Document