beishan orogenic collage
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaolin Wang ◽  
Xiaoming Zheng ◽  
Guixiang Meng ◽  
Hejun Tang ◽  
Tonghui Fang

The Hongshishan mafic-ultramafic complex is situated in the north of the Beishan orogenic collage and the southern part of the Central Asian Orogenic Belt. This paper outlines the petrological, geochemical, and mineralogical data of the Hongshishan ultramafic–mafic complex in the Beishan orogenic collage to constrain its tectonic setting and mineralization. The lithological units of the complex include dunite, clinopyroxene peridotite, pyroxenite, and gabbro. The complex showed concentric zonation, from clinopyroxene peridotite and dunite in the core to pyroxenite and gabbro in the margin. These ultramafic–mafic rocks are characterized by cumulate and layering textures. Field observations, petrography, and significant elemental composition variation, a decreasing sequence of ferromagnesian minerals (Mg#), olivine Fo, and spinel Cr#, all show fractional crystallization trends from dunites through clinopyroxene peridotite and pyroxenite, to gabbros. There are systematic trends among the primary oxides, e.g., CaO, TiO2, and Al2O3, with MgO, suggesting a fractional crystallization trend. SiO2 and Al2O3 increased, which coupled with decreasing MgO, suggested olivine fractionation. The negative correlations of CaO and Al2O3 with MgO meant the accumulation of spinel and mafic minerals. The compositions of olivines from the dunite and clinopyroxene peridotite in the Hongshishan plot within the Alaskan Global trend fields displayed a typical fractional crystallization trend similar to olivines in an Alaskan-type complex. The clinopyroxenes in the clinopyroxene peridotite primarily occur as a diopside and appear in the field of an Alaskan-type complex. The absence of orthopyroxene, less hydrous, and free of fluid inclusions in the chrome spinels means the absence of a magmatic origin of chromite-bearing peridotites in hydrous parental melts or scarce hydrous melts. Serpentinization, carbonatization, subduction modification, and enrichment may account for the LILE-enrichment and HFSE-depletion of peridotite rocks. Negative Eu anomalies and REE fractionations of mafic-ultramafic rocks may not be directly attributed to crustal assimilation. Petrological, mineralogical, and geochemical characteristics indicated the Hongshishan complex is not the member compositions of a typical ophiolite. However, it displays many similarities to Alaskan-type mafic-ultramafic intrusions related to subduction or arc magmas setting at ∼366.1 Ma and suffered subduction modification and enrichment. The Hongshishan complex is a unique Ir-Ru-rich chromite deposit in the southern margin of the Altaids orogenic belt. Chromites occur primarily in light yellow dunites, with banded, lenticular, veined, thin-bedded, and brecciated textures. Part of the chromite enrichment in IPGE (Os, Ir, Ru) and the chondrite-normalized spider diagram of PGE showed steep right-facing sloped patterns similar to those of the PGE-rich ophiolitic chromites.


Author(s):  
Zhonghua Tian ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Peng Huang ◽  
Ji’en Zhang ◽  
...  

The orogenic architecture of the Altaids of Central Asia was created by multiple large-scale slab roll-back and oroclinal bending. However, no regional structural deformation related to roll-back processes has been described. In this paper, we report a structural study of the Beishan orogenic collage in the southernmost Altaids, which is located in the southern wing of the Tuva-Mongol Orocline. Our new field mapping and structural analysis integrated with an electron backscatter diffraction study, paleontology, U-Pb dating, 39Ar-40Ar dating, together with published isotopic ages enables us to construct a detailed deformation-time sequence: During D1 times many thrusts were propagated northwards. In D2 there was ductile sinistral shearing at 336−326 Ma. In D3 times there was top-to-W/WNW ductile thrusting at 303−289 Ma. Two phases of folding were defined as D4 and D5. Three stages of extensional events (E1−E3) separately occurred during D1−D5. Two switches of the regional stress field were identified in the Carboniferous to Early Permian (D1-E1-D2-D3-E2) and Late Permian to Early Triassic (D4-E3-D5). These two switches in the stress field were associated with formation of bimodal volcanic rocks, and an extensional interarc basin with deposition of Permian-Triassic sediments, which can be related to two stages of roll-back of the subduction zone on the Paleo-Asian oceanic margin. We demonstrate for the first time that two key stress field switches were responses to the formation of the Tuva-Mongol Orocline.


2018 ◽  
Vol 153 ◽  
pp. 206-222 ◽  
Author(s):  
Xinyu Wang ◽  
Chao Yuan ◽  
Yunying Zhang ◽  
Xiaoping Long ◽  
Min Sun ◽  
...  

Lithos ◽  
2015 ◽  
Vol 224-225 ◽  
pp. 195-213 ◽  
Author(s):  
Dongfang Song ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Chunming Han ◽  
Zhonghua Tian

2013 ◽  
Vol 24 (3-4) ◽  
pp. 1127-1151 ◽  
Author(s):  
Dongfang Song ◽  
Wenjiao Xiao ◽  
Chunming Han ◽  
Zhonghua Tian ◽  
Zhongmei Wang

2013 ◽  
Vol 227 ◽  
pp. 368-388 ◽  
Author(s):  
Dongfang Song ◽  
Wenjiao Xiao ◽  
Chunming Han ◽  
Jiliang Li ◽  
Junfeng Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document