pigment aggregation
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 0)

Biology Open ◽  
2021 ◽  
pp. bio.058503
Author(s):  
Kun Guo ◽  
Jun Zhong ◽  
Lin Zhu ◽  
Fan Xie ◽  
Yu Du ◽  
...  

One of the main functions of physiological color change is thermoregulation. This change occurs much more rapidly than morphological color change, but the underlying mechanism remains poorly understood. Here, we studied the thermal dependence and molecular basis of physiological color change in lizards using Takydromus septentrionalis (Lacertidae) as the model system. Body color was thermally sensitive, becoming increasingly light as body temperatures deviated from the level (∼30 °C) preferred by this species. We identified 3,389 differentially expressed genes (DEGs) between lizards at 24 °C and 30 °C, and 1,097 DEGs between lizards at 36 °C and 30 °C. Temperature affected the cAMP signal pathway, motor proteins, cytoskeleton, and the expression of genes related to melanocyte-stimulating hormone (MSH) and melanocyte-concentrating hormone (MCH). Our data suggest that the role of physiological color change in thermoregulation is achieved in T. septentrionalis by altering the arrangement of pigments and thus the amount of solar radiation absorbed and reflected. G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion. This mechanism differs from that reported for teleost fish where MCH activates the G proteins and thereby causes pigment aggregation.


2019 ◽  
Vol 39 (2) ◽  
pp. 381-395
Author(s):  
Lara I. Dahora ◽  
Ashley Fitzgerald ◽  
Matthew Emanuel ◽  
Alexa F. Baiges ◽  
Zahabiya Husain ◽  
...  

2019 ◽  
Author(s):  
Lara I. Dahora ◽  
Ashley Fitzgerald ◽  
Matthew Emanuel ◽  
Alexa F. Baiges ◽  
Zahabiya Husain ◽  
...  

ABSTRACTMelanophores are pigmented cells that change the distribution of pigmented melanosomes, enabling animals to appear lighter or darker for camouflage, thermoregulation, and UV-protection. A complex series of hormonal and neural mechanisms regulates melanophore pigment distribution, making these cells a valuable tool to screen toxicants as a dynamic cell type that responds rapidly to the environment. We found that maltol, a naturally occurring flavor enhancer and fragrance agent, induces melanophore pigment aggregation in a dose-dependent manner in Xenopus laevis tadpoles. To determine if maltol affects camouflage adaptation, we placed tadpoles into maltol baths situated over either white or black background. Maltol induced pigment aggregation in a similar dose-dependent pattern regardless of background color. We also tested how maltol treatment compares to melatonin treatment and found that the degree of pigment aggregation induced by maltol is similar to treatment with melatonin, but the time course differs significantly. Last, maltol had no effect on mRNA expression of pro-opiomelanocortin or melanin concentrating hormone receptor in the brain, both of which regulate camouflage-related pigment aggregation. Our results suggest that maltol does not exert its effects via the camouflage adaptation mechanism nor via melatonin-based mechanisms. These results are the first to identify a specific toxicological effect of maltol exposure and rules out several mechanisms by which maltol may exert its effects on pigment aggregation.


2014 ◽  
Vol 25 (20) ◽  
pp. 3119-3132 ◽  
Author(s):  
Irina Semenova ◽  
Kazuho Ikeda ◽  
Karim Resaul ◽  
Pavel Kraikivski ◽  
Mike Aguiar ◽  
...  

Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.


2013 ◽  
Vol 304 (2) ◽  
pp. E176-E186 ◽  
Author(s):  
Quan Jiang ◽  
Anderson O. L. Wong

Pituitary hormones can act locally via autocrine/paracrine mechanisms to modulate pituitary functions, which represents an interesting aspect of pituitary regulation other than the traditional hypothalamic input and feedback signals from the periphery. Somatolactin, a member of the growth hormone (GH)/prolactin (PL) family, is a pleiotropic hormone with diverse functions, but its pituitary actions are still unknown. Recently, two SL isoforms, SLα and SLβ, have been cloned in grass carp. Based on the sequences obtained, recombinant proteins of carp SLα and SLβ with similar bioactivity in inducing pigment aggregation in carp melanophores were produced. In carp pituitary cells, SLα secretion and cell content were elevated by static incubation with recombinant carp SLα and SLβ, respectively. These stimulatory actions occurred with a parallel rise in SLα mRNA level with no changes in SLβ secretion, cell content, and gene expression. In contrast, SLα mRNA expression could be reduced by removing endogenous SLα and SLβ with immunoneutralization. At the pituitary cell level, SLα release, cell content, and mRNA expression induced by carp SLα and SLβ could be blocked by inhibiting JAK2/STAT5, PI3K/Akt, MEK1/2, and p38 MAPK, respectively. Furthermore, SLα and SLβ induction also triggered rapid phosphorylation of STAT5, Akt, MEK1/2, ERK1/2, MKK3/6, and p38 MAPK. These results suggest that 1) SLα and SLβ produced locally in the carp pituitary can serve as novel autocrine/paracrine stimulators for SLα secretion and synthesis and 2) SLα production induced by local release of SLα and SLβ probably are mediated by the JAK2/STAT5, PI3K/Akt, and MAPK signaling pathways.


2011 ◽  
Vol 22 (8) ◽  
pp. 1321-1329 ◽  
Author(s):  
Kazuho Ikeda ◽  
Olga Zhapparova ◽  
Ilya Brodsky ◽  
Irina Semenova ◽  
Jennifer S. Tirnauer ◽  
...  

Microtubule (MT)-based organelle transport is driven by MT motor proteins that move cargoes toward MT minus-ends clustered in the cell center (dyneins) or plus-ends extended to the periphery (kinesins). Cells are able to rapidly switch the direction of transport in response to external cues, but the signaling events that control switching remain poorly understood. Here, we examined the signaling mechanism responsible for the rapid activation of dynein-dependent MT minus-end–directed pigment granule movement in Xenopus melanophores (pigment aggregation). We found that, along with the previously identified protein phosphatase 2A (PP2A), pigment aggregation signaling also involved casein kinase 1ε (CK1ε), that both enzymes were bound to pigment granules, and that their activities were increased during pigment aggregation. Furthermore we found that CK1ε functioned downstream of PP2A in the pigment aggregation signaling pathway. Finally, we discovered that stimulation of pigment aggregation increased phosphorylation of dynein intermediate chain (DIC) and that this increase was partially suppressed by CK1ε inhibition. We propose that signal transduction during pigment aggregation involves successive activation of PP2A and CK1ε and CK1ε-dependent phosphorylation of DIC, which stimulates dynein motor activity and increases minus-end–directed runs of pigment granules.


2007 ◽  
Vol 20 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Márcia Ribeiro ◽  
John Campbell McNamara

2004 ◽  
Vol 24 (3) ◽  
pp. 203-214
Author(s):  
Charlotte Immerstrand ◽  
Harriet M. Nilsson ◽  
Margaretha Lindroth ◽  
Tommy Sundqvist ◽  
Karl-Eric Magnusson ◽  
...  

Melanophores are pigment cells found in the skin of lower vertebrates. The brownish-black pigment melanin is stored in organelles called melanosomes. In response to different stimuli, the cells can redistribute the melanosomes, and thereby change colour. During melanosome aggregation, a height increase has been observed in fish and frog melanophores across the cell centre. The mechanism by which the cell increases its height is unknown. Changes in cell shape can alter the electrical properties of the cell, and thereby be detected in impedance measurements. We have in earlier studies of Xenopus laevis melanophores shown that pigment aggregation can be revealed as impedance changes, and therefore we were interested in investigating the height changes associated with pigment aggregation further. Accordingly, we quantified the changes in cell height by performing vertical sectioning with confocal microscopy. In analogy with theories explaining the leading edge of migrating cells, we investigated the possibility that the elevation of plasma membrane is caused by local swelling due to influx of water through HgC12-sensitive aquaporins. We also measured the height of the microtubule structures to assess whether they are involved in the height increase. Our results show that pigment aggregation in X. laevis melanophores resulted in a significant height increase, which was substantially larger when aggregation was induced by latrunculin than with melatonin. Moreover, the elevation of the plasma membrane did not correlate with influx of water through aquaporins or formation of new microtubules, Rather, the accumulation of granules seemed to drive the change in cell height.


Sign in / Sign up

Export Citation Format

Share Document