1992 landers earthquake
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 111 (5) ◽  
pp. 2574-2594 ◽  
Author(s):  
Yongfei Wang ◽  
Christine Goulet

ABSTRACT Coseismic fault displacements in large earthquakes have caused significant damage to structures and lifelines on and near fault lines. Coseismic displacements represent a real threat, especially to distributed infrastructure systems. For infrastructure systems that can not avoid active faults, engineering displacement demands are defined using probabilistic fault-displacement hazard analyses (PFDHA). However, PFDHA models are sparse and poorly constrained partly due to the scarcity of detailed fault-displacement observations. Advancements in dynamic rupture simulation methods make them an attractive approach to address this important issue. Because fault displacements can be simulated for various geologic conditions as constrained by current knowledge about earthquake processes, they can be used to supplement the observation datasets. In addition to providing on-fault displacements, when used with appropriate constitutive models for the bulk medium, they can capture off-fault distributed inelastic deformations as well. For viable extrapolation, simulations must first be validated against data. In this article, we summarize the calibration and validation of the dynamic rupture model against the observations of the well-documented 1992 Landers earthquake. We defined a preferred model that reproduces several first-order fault-displacement metrics such as the on-fault partition of the total displacement, the mean fault-zone width, and the location of the peak displacement. Simulated ground motions consistent with the observations ensure that all physics important to modeling have been properly parameterized. For the extrapolation, we generated a suite of dynamic rupture models to quantify expected fault-displacement metrics, their intercorrelations, and magnitude dependencies, which are in part supported by the Landers and other recent earthquakes. Our validation and extrapolation exercise paves the way for using dynamic rupture modeling to quantitatively address fault-displacement hazard on a broader scale. The results are promising and are expected to be useful to inform PFDHA model development.


2017 ◽  
Vol 212 (2) ◽  
pp. 839-852 ◽  
Author(s):  
B Gombert ◽  
Z Duputel ◽  
R Jolivet ◽  
C Doubre ◽  
L Rivera ◽  
...  

2016 ◽  
Vol 43 (5) ◽  
pp. 1884-1892 ◽  
Author(s):  
Xueyuan Huang ◽  
Dinghui Yang ◽  
Ping Tong ◽  
José Badal ◽  
Qinya Liu

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1169-1188 ◽  
Author(s):  
P. Tong ◽  
D. Zhao ◽  
D. Yang ◽  
X. Yang ◽  
J. Chen ◽  
...  

Abstract. High-resolution 3-D P and S wave crustal velocity and Poisson's ratio models of the 1992 Landers earthquake (Mw 7.3) area are determined iteratively by a wave-equation-based travel-time seismic tomography (WETST) technique. The details of data selection, synthetic arrival-time determination, and trade-off analysis of damping and smoothing parameters are presented to show the performance of this new tomographic inversion method. A total of 78 523 P wave and 46 999 S wave high-quality arrival-time data from 2041 local earthquakes recorded by 275 stations during the period of 1992–2013 are used to obtain the final tomographic models, which cost around 10 000 CPU hours. Checkerboard resolution tests are conducted to verify the reliability of inversion results for the chosen seismic data and the wave-equation-based travel-time seismic tomography method. Significant structural heterogeneities are revealed in the crust of the 1992 Landers earthquake area which may be closely related to the local seismic activities. Strong variations of velocity and Poisson's ratio exist in the source regions of the Landers and three other nearby strong earthquakes. Most seismicity occurs in areas with high-velocity and low Poisson's ratio, which may be associated with the seismogenic layer. Pronounced low-velocity anomalies revealed in the lower crust along the Elsinore, the San Jacinto, and the San Andreas faults may reflect the existence of fluids in the lower crust. The recovery of these strong heterogeneous structures is facilitated by the use of full wave equation solvers and WETST and verifies their ability in generating high-resolution tomographic models.


2014 ◽  
Vol 6 (2) ◽  
pp. 2567-2613 ◽  
Author(s):  
P. Tong ◽  
D. Zhao ◽  
D. Yang ◽  
X. Yang ◽  
J. Chen ◽  
...  

Abstract. High-resolution 3-D P and S wave crustal velocity and Poisson's ratio models of the 1992 Landers earthquake (Mw 7.3) area are determined iteratively by a wave-equation based traveltime seismic tomography (WETST) technique as developed in the first paper. The details of data selection, synthetic arrival-time determination, and trade-off analysis of damping and smoothing parameters are presented to show the performance of this new tomographic inversion method. A total of 78 523 P wave and 46 999 S wave high-quality arrival-time data from 2041 local earthquakes recorded by 275 stations during the period of 1992–2013 is used to obtain the final tomographic models which costs around 10 000 CPU h. Checkerboard resolution tests are conducted to verify the reliability of inversion results for the chosen seismic data and the wave-equation based traveltime seismic tomography method. Significant structural heterogeneities are revealed in the crust of the 1992 Lander earthquake area which may be closely related to the local seismic activities. Strong variations of velocity and Poisson's ratio exist in the source regions of the Landers and three other strong earthquakes in this area. Most seismicity occurs in areas with high-velocity and low Poisson's ratio, which may be associated with the seismogenic layer. Pronounced low-velocity anomalies revealed in the lower crust along the Elsinore, the San Jacinto and the San Andreas faults may reflect the existence of fluids in the lower crust. The recovery of these strong heterogeneous structures are facilitated by the use of full wave equation solvers and WETST and verifies their ability in generating high-resolution tomographic models.


Sign in / Sign up

Export Citation Format

Share Document