scholarly journals Wave-equation based traveltime seismic tomography – Part 2: Application to the 1992 Landers earthquake (<i>M</i><sub>w</sub> 7.3) area

2014 ◽  
Vol 6 (2) ◽  
pp. 2567-2613 ◽  
Author(s):  
P. Tong ◽  
D. Zhao ◽  
D. Yang ◽  
X. Yang ◽  
J. Chen ◽  
...  

Abstract. High-resolution 3-D P and S wave crustal velocity and Poisson's ratio models of the 1992 Landers earthquake (Mw 7.3) area are determined iteratively by a wave-equation based traveltime seismic tomography (WETST) technique as developed in the first paper. The details of data selection, synthetic arrival-time determination, and trade-off analysis of damping and smoothing parameters are presented to show the performance of this new tomographic inversion method. A total of 78 523 P wave and 46 999 S wave high-quality arrival-time data from 2041 local earthquakes recorded by 275 stations during the period of 1992–2013 is used to obtain the final tomographic models which costs around 10 000 CPU h. Checkerboard resolution tests are conducted to verify the reliability of inversion results for the chosen seismic data and the wave-equation based traveltime seismic tomography method. Significant structural heterogeneities are revealed in the crust of the 1992 Lander earthquake area which may be closely related to the local seismic activities. Strong variations of velocity and Poisson's ratio exist in the source regions of the Landers and three other strong earthquakes in this area. Most seismicity occurs in areas with high-velocity and low Poisson's ratio, which may be associated with the seismogenic layer. Pronounced low-velocity anomalies revealed in the lower crust along the Elsinore, the San Jacinto and the San Andreas faults may reflect the existence of fluids in the lower crust. The recovery of these strong heterogeneous structures are facilitated by the use of full wave equation solvers and WETST and verifies their ability in generating high-resolution tomographic models.

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1169-1188 ◽  
Author(s):  
P. Tong ◽  
D. Zhao ◽  
D. Yang ◽  
X. Yang ◽  
J. Chen ◽  
...  

Abstract. High-resolution 3-D P and S wave crustal velocity and Poisson's ratio models of the 1992 Landers earthquake (Mw 7.3) area are determined iteratively by a wave-equation-based travel-time seismic tomography (WETST) technique. The details of data selection, synthetic arrival-time determination, and trade-off analysis of damping and smoothing parameters are presented to show the performance of this new tomographic inversion method. A total of 78 523 P wave and 46 999 S wave high-quality arrival-time data from 2041 local earthquakes recorded by 275 stations during the period of 1992–2013 are used to obtain the final tomographic models, which cost around 10 000 CPU hours. Checkerboard resolution tests are conducted to verify the reliability of inversion results for the chosen seismic data and the wave-equation-based travel-time seismic tomography method. Significant structural heterogeneities are revealed in the crust of the 1992 Landers earthquake area which may be closely related to the local seismic activities. Strong variations of velocity and Poisson's ratio exist in the source regions of the Landers and three other nearby strong earthquakes. Most seismicity occurs in areas with high-velocity and low Poisson's ratio, which may be associated with the seismogenic layer. Pronounced low-velocity anomalies revealed in the lower crust along the Elsinore, the San Jacinto, and the San Andreas faults may reflect the existence of fluids in the lower crust. The recovery of these strong heterogeneous structures is facilitated by the use of full wave equation solvers and WETST and verifies their ability in generating high-resolution tomographic models.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. T209-T234 ◽  
Author(s):  
Jing-Bo Chen ◽  
Jian Cao

Because of its high computational cost, we needed to develop an efficient numerical scheme for the frequency-domain 3D elastic wave equation. In addition, the numerical scheme should be applicable to media with a liquid-solid interface. To address these two issues, we have developed a new average-derivative optimal 27-point scheme with arbitrary directional grid intervals and a corresponding numerical dispersion analysis for the frequency-domain 3D elastic wave equation. The novelty of this scheme is that its optimal coefficients depend on the ratio of the directional grid intervals and Poisson’s ratio. In this way, this scheme can be applied to media with a liquid-solid interface and a computational grid with arbitrary directional grid intervals. For media with a variable Poisson’s ratio, we have developed an effective and stable interpolation method for optimization coefficients. Compared with the classic 19-point scheme, this new scheme reduces the required number of grid points per wavelength for equal and unequal directional grid intervals. The reduction of the number of grid points increases as the Poisson’s ratio becomes larger. In particular, the numerical S-wave phase velocity of this new scheme becomes zero, whereas the classic 19-point scheme produces a spurious numerical S-wave phase velocity, as Poisson’s ratio reaches 0.5. We have performed numerical examples to develop the theoretical analysis.


1965 ◽  
Vol 55 (2) ◽  
pp. 425-439
Author(s):  
Ziro Suzuki

Abstract Shear waves recorded at five stations in the Maine Seismic Experiment of 1961 are studied to find a possible velocity distribution. Possibilities in various cases are examined based on time, apparent velocity and amplitude, and compared with the results from P. Flat layer models are rejected and the continuous velocity change is the only possible case except for some more complicated structure. The range of possible distribution of S velocity and Poisson's ratio are obtained. The P and S wave crustal models cannot be reconciled with a constant Poisson's ratio. The Poisson's ratio is 0.255-0.27 at the surface and is constant or slightly decreasing up to 15 km deep. Beyond 20 km it increases continuously with depth up to 0.30-0.32 at the bottom of the crust. This implies the continuous change in material in the lower crust.


2020 ◽  
Vol 221 (2) ◽  
pp. 981-1001
Author(s):  
C Peirce ◽  
A H Robinson ◽  
M J Funnell ◽  
R C Searle ◽  
C J MacLeod ◽  
...  

SUMMARY A region of oceanic core complexes (OCCs) exists at 13°N on the Mid-Atlantic Ridge that is regarded as a type site. This site includes two OCCs at 13°20′N and 13°30′N, thought to be in the active and dying stages of evolution, and two together called the Ashadze Complex (centred at 13°05′N) that are considered to be relict. Here we describe the results of S-wave seismic modelling along an ∼200-km-long 2-D transect traversing, south-to-north, through both the Mercurius and Marathon fracture zones, the southern outside corner of the 13°N segment, the OCCs, the ridge axis deviation in trend centred at 13°35′N, and the youngest oceanic crust of the eastern ridge flank to the north. Our inversion model, and the corresponding Vp/Vs ratio, show that the majority of the crust beneath the 13°30′N OCC comprises metamorphosed lithologies that have been exhumed to the shallowest subseabed level, while basaltic lithologies underlie the 13°20′N OCC. The transition between these contrasting crustal structures occurs over a distance of &lt;5 km, and extends to at least ∼2 km depth below seafloor. The northern and southern OCCs of the Ashadze Complex have contrasting structures at shallow depth, with the northern OCC having a faster S-wave velocity in the upper crust. A Vp/Vs ratio of &gt;1.9 (and equivalent Poisson's ratio of &gt;0.3) indicates exhumed and/or metamorphosed lithologies beneath the bathymetric depression between them and within the crust beneath the southern OCC. Between the northern and southern flanks of the Marathon fracture zone and northern flank of Mercurius fracture zone, the lower crust has a relatively low Vp/Vs ratio suggesting that the deformation associated with Marathon fracture zone, which facilitates fluid ingress, extends laterally within the lower crust. Marathon fracture zone itself is underlain by a broad zone of low S-wave velocity (∼2.0 km s−1) up to ∼20 km wide from the seabed to at least the mid-crust, that is mirrored in a high Vp/Vs ratio and lower density, particularly deeper than ∼1 km below seabed within its bathymetric footprint. Volcanic domains are highlighted by a low Vp/Vs ratio of &lt;1.6 (and equivalent Poisson's ratio of &lt;0.15). Our combined seismic and density models favour the localized model of OCC evolution. They also show a considerable ridge-parallel variability in the amount and distribution of magmatic versus metamorphosed crust. Our results suggest that the current focus of magmatism lies to the north of the 13°20′N OCC, where the magmatic accretion-type seabed morphology observed is mirrored in the pattern of microseismicity, suggesting that its inward-facing median-valley-wall fault may link to the 13°20′N OCC detachment surface. Magmatism and active faulting behind (to the west) the footwall breakaway of the 13°30′N OCC, and the microseismicity concentrated in a band along its southern flank, suggest a readjustment of ridge geometry along axis is underway. As part of this, a transform offset is forming that will ultimately accommodate the 13°30′N OCC in its inside corner on the eastern flank of the ridge axis to the north.


1992 ◽  
Vol 97 (B13) ◽  
pp. 19993 ◽  
Author(s):  
D. J. White ◽  
B. Milkereit ◽  
M. H. Salisbury ◽  
J. A. Percival

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ran Bachrach ◽  
Jack Dvorkin ◽  
Amos M. Nur

We determined P- and S-wave velocity depth profiles in shallow, unconsolidated beach sand by analyzing three‐component surface seismic data. P- and S-wave velocity profiles were calculated from traveltime measurements of vertical and tangential component seismograms, respectively. The results reveal two discrepancies between theory and data. Whereas both velocities were found to be proportional to the pressure raised to the power of 1/6, as predicted by the Hertz‐Mindlin contact theory, the actual values of the velocities are less than half of those calculated from this theory. We attribute this discrepancy to the angularity of the sand grains. Assuming that the average radii of curvature at the grain contacts are smaller than the average radii of the grains, we modify the Hertz‐Mindlin theory accordingly. We found that the ratio of the contact radius to the grain radius is about 0.086. The second disparity is between the observed Poisson’s ratio of 0.15 and the theoretical value (0.008 for random pack of quartz spheres). This discrepancy can be reconciled by assuming slip at the grain contacts. Because slip decreases the shearing between grains, Poisson’s ratio increases.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5007
Author(s):  
Stian Rørheim ◽  
Mohammad Hossain Bhuiyan ◽  
Andreas Bauer ◽  
Pierre Rolf Cerasi

Carbon capture and storage (CCS) by geological sequestration comprises a permeable formation (reservoir) for CO2 storage topped by an impermeable formation (caprock). Time-lapse (4D) seismic is used to map CO2 movement in the subsurface: CO2 migration into the caprock might change its properties and thus impact its integrity. Simultaneous forced-oscillation and pulse-transmission measurements are combined to quantify Young’s modulus and Poisson’s ratio as well as P- and S-wave velocity changes in the absence and in the presence of CO2 at constant seismic and ultrasonic frequencies. This combination is the laboratory proxy to 4D seismic because rock properties are monitored over time. It also improves the understanding of frequency-dependent (dispersive) properties needed for comparing in-situ and laboratory measurements. To verify our method, Draupne Shale is monitored during three consecutive fluid exposure phases. This shale appears to be resilient to CO2 exposure as its integrity is neither compromised by notable Young’s modulus and Poisson’s ratio nor P- and S-wave velocity changes. No significant changes in Young’s modulus and Poisson’s ratio seismic dispersion are observed. This absence of notable changes in rock properties is attributed to Draupne being a calcite-poor shale resilient to acidic CO2-bearing brine that may be a suitable candidate for CCS.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rupeng Ma ◽  
Jing Ba ◽  
José Carcione ◽  
Maxim Lebedev ◽  
Changsheng Wang

The petrophysical properties can be proper indicators to identify oil and gas reservoirs, since the pore fluids have significant effects on the wave response. We have performed ultrasonic measurements on two sets of tight siltstones and dolomites at partial saturation. P- and S-wave velocities are obtained by the pulse transmission technique, while attenuation is calculated using the centroid-frequency shift and spectral-ratio methods. The fluid sensitivities of different properties (i.e., P- and S-wave velocities, impedances and attenuation, Poisson's ratio, density, and their combinations) are quantitatively analyzed by considering the data distribution, based on the crossplot technique. The result shows that the properties (P- to S-wave velocity and attenuation ratios, Poisson's ratio, and first to second Lamé constant ratio) with high fluid-sensitivity indicators successfully distinguish gas from oil and water, unlike oil from water. Moreover, siltstones and dolomites can be identified on the basis of data distribution areas. Ultrasonic rock-physics templates of the P- to S-wave velocity ratio vs. the product of first Lamé constant with density obtained with a poroelastic model, considering the structural heterogeneity and patchy saturation, are used to predict the saturation and porosity, which are in good agreement with the experimental data at different porosity ranges.


Sign in / Sign up

Export Citation Format

Share Document