beam luminosity
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
He-Yi Li ◽  
Ren-You Zhang ◽  
Wen-Gan Ma ◽  
Yi Jiang ◽  
Xiao-Zhou Li

Abstract We present the full NLO electroweak radiative corrections to $e^+e^-\gamma$ production in $\gamma\gamma$ collision, which is an ideal channel for calibrating the beam luminosity of Photon Linear Collider. We analyse the dependence of the total cross section on the beam colliding energy, and investigate the kinematic distributions of final particles at various initial photon beam polarizations at EW NLO accuracy. The numerical results show that the EW relative corrections to the total cross section are non-negligible and become more and more significant as the increase of the beam colliding energy, even can exceed $-10\%$ in $\text{J} = 2$ $\gamma\gamma$ collision at $\sqrt{\hat{s}}=1~ \text{TeV}$. Such EW corrections are very important and should be taken into consideration in precision theoretical and experimental studies at high-energy $\gamma\gamma$ colliders.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2289 ◽  
Author(s):  
Salvatore Tudisco ◽  
Francesco La Via ◽  
Clementina Agodi ◽  
Carmen Altana ◽  
Giacomo Borghi ◽  
...  

Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance.


2018 ◽  
Vol 1056 ◽  
pp. 012032 ◽  
Author(s):  
G Litrico ◽  
S Tudisco ◽  
F La Via ◽  
C Altana ◽  
C Agodi ◽  
...  

2014 ◽  
Vol 60 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Ryszard S. Romaniuk

Abstract The Compact Muon Solenoid CMS is one of the major detectors of the LHC Large Hadron Collider accelerator. The second, a competitive brother, is Atlas. The accelerator complex in CERN was shut down for two years, after two years of exploitation, and will resume its work in 2015. During this break, called long shutdown LS1 a number of complex components, including electronics and photonics, will be intensely refurbished. Not only the LHC itself but also the booster components and detectors. In particular, the beam luminosity will be doubled, as well as the colliding beam energy. This means tenfold increase in the integrated luminosity over a year to 250fb−1/y. Discovery potential will be increased. This potential will be used for subsequent two years, with essentially no breaks, till the LS2 in 2017. The paper presents an introduction to the research area of the LHC and chosen aspects of the CMS detector modernization. The Warsaw CMS Group is involved in CMS construction, commissioning, maintenance and refurbishment, in particular for algorithms and hardware of the muon trigger. The Group consists of members form the following local research institutions, academic and governmental: IFD-UW, NCBJ-´Swierk and ISEWEiTI- PW.


1981 ◽  
Vol 24 (9) ◽  
pp. 2379-2382 ◽  
Author(s):  
Stephen Peggs ◽  
Richard Talman

Sign in / Sign up

Export Citation Format

Share Document