species sensitivity distribution
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Cristiana Rizzi ◽  
Sara Villa ◽  
Alessandro Cuzzeri ◽  
Antonio Finizio

The species sensitivity distribution (SSD) calculates the hazardous concentration at which 5% of species (HC5) will be potentially affected. For many compounds, HC5 values are unavailable impeding the derivation of SSD curves. Through a detailed bibliographic survey, we selected HC5 values (from acute toxicity tests) for freshwater aquatic species and 129 pesticides. The statistical distribution and variability of the HC5 values within the chemical classes were evaluated. Insecticides are the most toxic compounds in the aquatic communities (HC5 = 1.4x10−03 µmol L−1), followed by herbicides (HC5 = 3.3 x10−2 µmol L−1) and fungicides (HC5 = 7.8 µmol L−1). Subsequently, the specificity of the mode of action (MoA) of pesticides on freshwater aquatic communities was investigated by calculating the ratio between the estimated baseline toxicity for aquatic communities and the HC5 experimental values gathered from the literature. Moreover, we proposed and validated a scheme to derive the ecological thresholds of toxicological concern (eco-TTC) of pesticides for which data on their effects on aquatic communities are not available. We proposed eco-TTCs for different classes of insecticides, herbicides, and fungicides with a specific MoA, and three eco-TTCs for those chemicals with unavailable MoA. We consider the proposed approach and eco-TTC values useful for risk management purposes.


Author(s):  
Jae-Woong Jung ◽  
Jae Soon Kang ◽  
Jinsoo Choi ◽  
June-Woo Park

The necessity for the aquatic ecological risk assessment for benzophenone-3 (BP-3) is increasing due to its high toxic potential and high detection frequency in freshwater. The initial step in the ecological risk assessment is to determine predicted no-effect concentration (PNEC). This study derived PNEC of BP-3 in freshwater using a species sensitivity distribution (SSD) approach, whilst existing PNECs are derived using assessment factor (AF) approaches. A total of eight chronic toxicity values, obtained by toxicity testing and a literature survey, covering four taxonomic classes (fish, crustaceans, algae, and cyanobacteria) were used for PNEC derivation. Therefore, the quantity and quality of the toxicity data met the minimum requirements for PNEC derivation using an SSD approach. The PNEC derived in this study (73.3 μg/L) was far higher than the environmental concentration detected in freshwater (up to 10.4 μg/L) as well as existing PNECs (0.67~1.8 μg/L), mainly due to the difference in the PNEC derivation methodology (i.e., AF vs. SSD approach). Since the SSD approach is regarded as more reliable than the AF approach, we recommend applying the PNEC value derived in this study for the aquatic ecological risk assessment of BP-3, as the use of the existing PNEC values seems to unnecessarily overestimate the potential ecological risk of BP-3 in freshwater.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 58
Author(s):  
Yuxia Liu ◽  
Qixing Zhou ◽  
Yi Wang ◽  
Siwen Cheng ◽  
Weiduo Hao

Chromium (Cr) is one of the most severe heavy metal contaminants in soil, and it seriously threatens ecosystems and human health through the food chain. It is fundamental to collect toxicity data of Cr before developing soil quality criteria/standards in order to efficiently prevent health risks. In this work, the short-term toxic effects of Cr(VI) and Cr(III) on the root growth of eleven terrestrial plants were investigated. The corresponding fifth percentile hazardous concentrations (HC5) by the best fitting species sensitivity distribution (SSD) curves based on the tenth percentile effect concentrations (EC10) were determined to be 0.60 and 4.51 mg/kg for Cr (VI) and Cr (III), respectively. Compared to the screening level values worldwide, the HC5 values in this study were higher for Cr(VI) and lower for Cr(III) to some extent. The results provide useful toxicity data for deriving national or local soil quality criteria for trivalent and hexavalent Cr.


Sign in / Sign up

Export Citation Format

Share Document