species sensitivity
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 98)

H-INDEX

43
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Jian Sun ◽  
PengFei Xiao ◽  
XH Yin ◽  
Kun Zhang ◽  
Guonian Zhu ◽  
...  

Abstract In China, the fungicide fludioxonil, that accumulates and persists in sediments, has a widespread agricultural use to control various fungal diseases. Its residues may cause toxic effects to benthic aquatic fauna, thereby impacting ecosystem service functions of aquatic ecosystems. To assess the potential environmental effects of fludioxonil in the sediment compartment of edge-of-field surface waters, sediment-spiked single-species toxicity tests with benthic macroinvertebrates were performed. In all experiments artificial sediment was used with an organic carbon content of 2.43% on dry weight basis. The single-species tests were conducted with 8 benthic macroinvertebrates covering different taxonomic groups typical for the Yangtze River Delta, China. The 28d-EC10 and 28-LC10 values thus obtained were used to construct species sensitivity distributions (SSDs). In addition, our data were supplemented with similar fludioxonil-spiked sediment toxicity data for benthic invertebrates from the Netherlands. Based on SSDs constructed with 28d-EC10 values of 8 benthic species from our experiments in China, hazardous concentrations to 5% of the species tested (HC5’s) of respectively 0.57 mg fludioxonil/kg dry weight sediment and 5.4 µg fludioxonil/L pore water were obtained. Supplementing our data from China with 8 similar toxicity data for other benthic species from the Netherlands, these HC5 values became respectively 1.2 mg fludioxonil/kg dry weight sediment and 11 µg fludioxonil/L pore water.


Author(s):  
Cristiana Rizzi ◽  
Sara Villa ◽  
Alessandro Cuzzeri ◽  
Antonio Finizio

The species sensitivity distribution (SSD) calculates the hazardous concentration at which 5% of species (HC5) will be potentially affected. For many compounds, HC5 values are unavailable impeding the derivation of SSD curves. Through a detailed bibliographic survey, we selected HC5 values (from acute toxicity tests) for freshwater aquatic species and 129 pesticides. The statistical distribution and variability of the HC5 values within the chemical classes were evaluated. Insecticides are the most toxic compounds in the aquatic communities (HC5 = 1.4x10−03 µmol L−1), followed by herbicides (HC5 = 3.3 x10−2 µmol L−1) and fungicides (HC5 = 7.8 µmol L−1). Subsequently, the specificity of the mode of action (MoA) of pesticides on freshwater aquatic communities was investigated by calculating the ratio between the estimated baseline toxicity for aquatic communities and the HC5 experimental values gathered from the literature. Moreover, we proposed and validated a scheme to derive the ecological thresholds of toxicological concern (eco-TTC) of pesticides for which data on their effects on aquatic communities are not available. We proposed eco-TTCs for different classes of insecticides, herbicides, and fungicides with a specific MoA, and three eco-TTCs for those chemicals with unavailable MoA. We consider the proposed approach and eco-TTC values useful for risk management purposes.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6574
Author(s):  
Jiawei Zhang ◽  
Mengtao Zhang ◽  
Huanyu Tao ◽  
Guanjing Qi ◽  
Wei Guo ◽  
...  

Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated aliphatic compounds that are persistent and bioaccumulate, posing a potential threat to the aquatic environment. The electroplating industry is considered to be an important source of PFASs. Due to emerging PFASs and many alternatives, the acute toxicity data for PFASs and their alternatives are relatively limited. In this study, a QSAR–ICE–SSD composite model was constructed by combining quantitative structure-activity relationship (QSAR), interspecies correlation estimation (ICE), and species sensitivity distribution (SSD) models in order to obtain the predicted no-effect concentrations (PNECs) of selected PFASs. The PNECs for the selected PFASs ranged from 0.254 to 6.27 mg/L. The ΣPFAS concentrations ranged from 177 to 983 ng/L in a river close to an electroplating industry in Shenzhen. The ecological risks associated with PFASs in the river were below 2.97 × 10−4.


2021 ◽  
pp. 104063872110329
Author(s):  
Hilary J. Burgess ◽  
Betty P. Lockerbie ◽  
Lisanework E. Ayalew ◽  
Antonia Dibernardo ◽  
Kristýna Hrazdilová ◽  
...  

We developed a PCR assay for the detection of Babesia odocoilei based on the 18S rRNA gene. Multiple specimens of B. odocoilei were examined, and the assay consistently produced a small specific PCR product of 306 bp. The PCR assay was also challenged with DNA from 13 other Babesia species and 2 Theileria species, originating from 10 different host species; however, nonspecific DNA amplification and multiple banding patterns were observed, and the amplicon banding patterns varied between different isolates of the same species. Sensitivity was determined to be 6.4 pg of DNA, and an estimated 0.0001% parasitism. This assay can be utilized for species-specific differential detection of B. odocoilei.


2021 ◽  
Vol 350 ◽  
pp. S179-S180
Author(s):  
S.A. Oginah ◽  
L. Posthuma ◽  
M. Hauschild ◽  
P. Fantke

AMBIO ◽  
2021 ◽  
Author(s):  
Runsheng Song ◽  
Dingsheng Li ◽  
Alexander Chang ◽  
Mengya Tao ◽  
Yuwei Qin ◽  
...  

AbstractSpecies Sensitivity Distribution (SSD) is a key metric for understanding the potential ecotoxicological impacts of chemicals. However, SSDs have been developed to estimate for only handful of chemicals due to the scarcity of experimental toxicity data. Here we present a novel approach to expand the chemical coverage of SSDs using Artificial Neural Network (ANN). We collected over 2000 experimental toxicity data in Lethal Concentration 50 (LC50) for 8 aquatic species and trained an ANN model for each of the 8 aquatic species based on molecular structure. The R2 values of resulting ANN models range from 0.54 to 0.75 (median R2 = 0.69). We applied the predicted LC50 values to fit SSD curves using bootstrapping method, generating SSDs for 8424 chemicals in the ToX21 database. The dataset is expected to serve as a screening-level reference SSD database for understanding potential ecotoxicological impacts of chemicals.


Sign in / Sign up

Export Citation Format

Share Document