freshwater ecotoxicity
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 846
Author(s):  
Georgios Archimidis Tsalidis

Industrial agriculture results in environmental burdens due to the overuse of fertilizers and pesticides. Fungicides is a class of pesticides whose application contributes (among others) to human toxicity and ecotoxicity. The European Union aims to increase organic agriculture. For this reason, this work aims to analyze climate change, freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, (terrestrial) acidification, and freshwater eutrophication impacts of fungicides and calculate expected benefits to human health (per European citizen) and ecosystem quality (terrestrial) with life cycle assessment (LCA) during crop production. The Scopus database was searched for LCA studies that considered the application of fungicides to specific crops. The analysis shows how many systemic and contact fungicides were considered by LCA studies and what was the applied dosage. Furthermore, it shows that fungicides highly contribute to freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, and freshwater eutrophication for fruits and vegetables, but to a low extent compared to all considered environmental impacts in the case of cereals and rapeseed. Expected benefits to human health and ecosystem quality after fungicides elimination are greater for fruits and vegetables, ranging between 0 to 47 min per European citizen in a year and 0 to 90 species per year, respectively.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4314
Author(s):  
Bradley Ridoutt ◽  
Danielle Baird ◽  
Javier Navarro ◽  
Gilly A. Hendrie

Pesticides are widely used in food production, yet the potential harm associated with their emission into the environment is rarely considered in the context of sustainable diets. In this study, a life cycle assessment was used to quantify the freshwater ecotoxicity, human toxicity carcinogenic effects, and human toxicity noncarcinogenic effects associated with pesticide use in relation to 9341 individual Australian adult daily diets. The three environmental indicators were also combined into a pesticide toxicity footprint, and a diet quality score was applied to each diet. Energy-dense and nutrient-poor discretionary foods, fruits, and protein-rich foods were the sources of most of the dietary pesticide impacts. Problematically, a dietary shift toward recommended diets was found to increase the pesticide toxicity footprint compared to the current average diet. Using a quadrant analysis, a recommended diet was identified with a 38% lower pesticide toxicity footprint. This was achieved mainly through a reduction in the discretionary food intake and by limiting the choice of fresh fruits. As the latter contradicts dietary recommendations to eat a variety of fruits of different types and colors, we concluded that dietary change may not be the best approach to lowering the environmental impacts of pesticides in the food system. Instead, targeted action in the horticultural industry may be more effective. Consumers might encourage this transition by supporting growers that reduce pesticide use and apply less environmentally harmful active ingredients.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Anna Elisabeth Gnielka ◽  
Christof Menzel

AbstractEvery consumer’s decision has an impact on the environment, and even basic food products such as pasta have an impact due to their high consumption rates. Factors that can be influenced by the consumer include the preparation (cooking), last mile and packaging phases. The last mile has not been considered in most studies but contributes considerably to the environmental impact of pasta. The three phases and their environmental impact on the life cycle of pasta are analyzed in this cradle-to-grave life cycle assessment. The focus of the study lies on the impact categories climate change, agricultural land occupation, fossil depletion, water depletion, freshwater eutrophication and freshwater ecotoxicity. Inventory data were taken from other studies, were collected in cooperation with a zero-packaging organic grocery store in Germany or were gained in test series. Our results show that the preparation of pasta has the greatest environmental impact (over 40% in the impact categories climate change and fossil depletion and over 50% in the impact category freshwater eutrophication), followed by the last mile (over 20% in the impact categories climate change and fossil depletion) and lastly the packaging (nearly 9% in the impact categories freshwater eutrophication and freshwater ecotoxicity). Based on our study´s results, we provide some recommendations for minimizing the environmental impacts of pasta.


2021 ◽  
Vol 13 (17) ◽  
pp. 9922
Author(s):  
Beatrice Salieri ◽  
Natasha Stoudmann ◽  
Roland Hischier ◽  
Claudia Som ◽  
Bernd Nowack

Microplastics are ubiquitous in ecosystems and a lot of research is being performed to understand their environmental fate and effects on organisms. However, the release and impact of MP has so far not been considered in LCA studies. This is due to missing information on the inventory side about microplastic releases and missing Characterization Factors to quantify the effects of MP. The goal of this study was to elucidate the relevance of MP release into freshwaters from an LCA perspective, by using worst-case assumptions. In accordance with the USEtox framework, an interim and simplified Characterization Factor for the impact category of freshwater ecotoxicity was calculated to be 3231 PAF·m3·d·kg−1. Applying this Characterization Factor, two LCA case studies were conducted, one on a polyester T-Shirt and one with a shower gel containing microplastics. The results show a small contribution of microplastics to the freshwater ecotoxicity for a scenario with state-of-the-art wastewater treatment. Different scenarios varying in microplastic release and removal during wastewater treatment and a sensitivity analysis of the Characterization Factor allowed identifying the potential range of the microplastic contribution to the overall ecotoxicity. In conclusion, the inclusion of microplastic release into LCA only marginally influences the overall environmental effects of the two products in the LCA case studies.


2021 ◽  
Vol 13 (11) ◽  
pp. 6323
Author(s):  
Pilar Legua ◽  
Francisca Hernández ◽  
Francesca Tozzi ◽  
Rafael Martínez-Font ◽  
David Jorquera ◽  
...  

The Life Cycle (LCA) Assessment methodology was applied to identify the potential environmental impact of dredged sediments used as growing media for food crops. The dredged sediments used came from Livorno port and were previously phytoremediated. For the assay, strawberry plants (Fragaria x ananassa Duch vr. ‘San Andreas’) were used. The plants were cultivated on three different substrates (100% peat, 100% dredged sediment and 50% mix peat/sediment) to identify the real impact of the culture media on the growing process. LCA was calculated and analyzed according to ISO 14040:2006 by SimaPro software. ReCipe Midpoint (E) V1.13/Europe Recipe E method was applied. One kilogram of produced strawberry, for each crop media tested, was defined as the functional unit. Eighteen impact categories were selected where Marine Eutrophication (ME), Human Toxicity (HT) and Freshwater Ecotoxicity (FET) were identified as relevant impact categories. The LCA results showed an increase in the environmental impact of strawberry cultivation using 100% sediment against 100% peat, due to the decrease in fruit production caused by the sediment. Nevertheless, the decrease in the environmental impact and the fruit production increase identified when the sediment is used mixed (<50%) with other substrates. The appropriate use of these substrates would be justified within the context of the circular economy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nils Baumgärtner ◽  
Sarah Deutz ◽  
Christiane Reinert ◽  
Niklas Nolzen ◽  
Lucas Elias Kuepper ◽  
...  

National energy models provide decarbonization strategies. Most national energy models focus on costs and greenhouse gas emissions only. However, this focus carries the risk that burdens shift to other environmental impacts. Energy models have therefore been extended by life-cycle assessment (LCA). Furthermore, deep decarbonization is only possible by targeting all high-emission sectors. Thus, we present a holistic national energy model that includes high-emission sectors and LCA. The model provides detailed environmental impacts for electricity, heat, and transport processes in Germany for meeting the climate targets up to 2050. Our results show that renewable energies and storage are key technologies for decarbonized energy systems. Furthermore, sector coupling is crucial and doubles electricity demand. Our LCA shows that environmental impacts shift from operation to infrastructure highlighting the importance of an impact assessment over the full life cycle. Decarbonization leads to many environmental cobenefits; however, it also increases freshwater ecotoxicity and depletion of metal and mineral resources. Thus, holistic planning of decarbonization strategies should also consider other environmental impacts.


2021 ◽  
Author(s):  
Wei Chen ◽  
Tianzuo Zhang ◽  
Xu Tian ◽  
Yiji Zhai ◽  
Yong Geng ◽  
...  

Abstract The agriculture sector is both a significant consumer of energy and water and a major source of environmental pollution and greenhouse gases. Soybean production (Glycine max) has experienced a fast growth and it is the fourth most widely cultivated crop, leading to serious environmental concerns. This study evaluates the energy, carbon, and water footprints of China’s soybean production so that key environmental impacts can be identified. To provide reliable results for decision-making, uncertainty analysis is conducted based on the Monte Carlo model. Results show that the impact on climate change, fossils depletion, ecosystem quality, human health, and resource was 3.33×103 kg CO2 eq (GSD2 = 1.87), 343.37 kg oil eq (GSD2 = 1.60), 6.18×10− 5 Species·yr (GSD2 = 1.81), 3.26×10− 3 DALY (GSD2 = 1.81), and 89.22 $ (GSD2 = 2.28), respectively. Freshwater ecotoxicity was the dominant contributor (77.69%) to the ecosystem quality category, while climate change (85.22%) was the dominant contributor to the human health category. Key factors analysis results show that diammonium phosphate and diesel, and on-site emissions from soybean production, were the major contributors to the overall environmental burden of soybean production. Several policy recommendations are proposed, focusing on trade structure optimization, technological improvements, and efficient resource use. Such policy recommendations provide valuable insights to those decision-makers so that they can prepare appropriate mitigation policies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Brett Duane ◽  
Linnea Borglin ◽  
Stephanie Pekarski ◽  
Sophie Saget ◽  
Henry Fergus Duncan

Abstract Background To analyse via life cycle analysis (LCA) the global resource use and environmental output of the endodontic procedure. Methodology An LCA was conducted to measure the life cycle of a standard/routine two-visit RCT. The LCA was conducted according to the International Organization of Standardization guidelines; ISO 14040:2006. All clinical elements of an endodontic treatment (RCT) were input into OpenLCA software using process and flows from the ecoinvent database. Travel to and from the dental clinic was not included. Environmental outputs included abiotic depletion, acidification, freshwater ecotoxicity/eutrophication, human toxicity, cancer/non cancer effects, ionizing radiation, global warming, marine eutrophication, ozone depletion, photochemical ozone formation and terrestrial eutrophication. Results An RCT procedure contributes 4.9 kg of carbon dioxide equivalent (CO2 eq) emissions. This is the equivalent of a 30 km drive in a small car. The main 5 contributors were dental clothing followed by surface disinfection (isopropanol), disposable bib (paper and plastic), single-use stainless steel instruments and electricity use. Although this LCA has illustrated the effect endodontic treatment has on the environment, there are a number of limitations that may influence the validity of the results. Conclusions The endodontic team need to consider how they can reduce the environmental burden of endodontic care. One immediate area of focus might be to consider alternatives to isopropyl alcohol, and look at paper, single use instrument and electricity use. Longer term, research into environmentally-friendly medicaments should continue to investigate the replacement of current cytotoxic gold standards with possible natural alternatives. Minimally invasive regenerative endodontics techniques designed to stimulate repair or regeneration of damaged pulp tissue may also be one way of improving the environmental impact of an RCT.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6048
Author(s):  
A. Rashedi ◽  
Taslima Khanam ◽  
Mirjam Jonkman

As the world grapples with the COVID-19 pandemic, there has been a sudden and abrupt change in global energy landscape. Traditional fossil fuels that serve as the linchpin of modern civilization have found their consumption has rapidly fallen across most categories due to strict lockdown and stringent measures that have been adopted to suppress the disease. These changes consequently steered various environmental benefits across the world in recent time. The present article is an attempt to investigate these environmental benefits and reversals that have been materialized in this unfolding situation due to reduced consumption of fossil fuels. The life cycle assessment tool was used hereby to evaluate nine environmental impacts and one energy based impact. These impacts include ozone formation (terrestrial ecosystems), terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, land use, mineral resources scarcity, and cumulative exergy demand. Outcomes from the study demonstrate that COVID-19 has delivered impressive changes in global environment and life cycle exergy demand, with about 11–25% curtailment in all the above-mentioned impacts in 2020 in comparison to their corresponding readings in 2019.


Sign in / Sign up

Export Citation Format

Share Document