forest arthropods
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 4 ◽  
Author(s):  
Tomohiro Yoshida ◽  
Yasunori Kusunoki ◽  
Yuya Fukano ◽  
Naoki Hijii

Vertical stratification of forests results in the occurrence of different arthropod assemblages between the vertical layers. Fallen arthropods from the canopy layers (i.e., “arthropod rain”) are additional food sources for predators thriving on the forest floor (FF). However, the abundances of arthropods are strongly affected by weather conditions and vertical stratification. Therefore, in this study, we investigated the vertical distribution of arthropod assemblages and effects of temperature and precipitation on the arthropod rain in a temperate conifer (Cryptomeria japonica) forest. Arthropods were collected by water-pan traps and trunk-sticky traps in the upper canopy (UC; 16 m), lower canopy (10 m), and FF (0.5 m). Among the fallen arthropods collected by water-pan traps, wandering detritivores, and herbivores were more abundant ranging from the FF to the UC, whereas the abundance of wandering predators (mainly spiders) was similar in the upper and lower canopies. However, detritivores, herbivores, and predators showed the highest abundance in the UC among the flying arthropods. Wandering arthropods moved upward from the FF toward the tree trunks more frequently than downward, indicating the importance of arthropod immigration from the ground to arboreal habitats. Temperature and precipitation had different effects on fallen and moving arthropods among different taxonomic groups. Flying arthropods were affected only by temperature, while wandering detritivores and herbivores were affected by precipitation and temperature. Thus, the abundance of wandering and flying arthropods differed among the vertical layers of a temperate conifer forest; additionally, arthropod rain was closely associated with weather conditions.


Food Webs ◽  
2019 ◽  
Vol 18 ◽  
pp. e00112 ◽  
Author(s):  
R.C. Garrick ◽  
D.K. Reppel ◽  
J.T. Morgan ◽  
S. Burgess ◽  
C. Hyseni ◽  
...  

2018 ◽  
Vol 115 (44) ◽  
pp. E10397-E10406 ◽  
Author(s):  
Bradford C. Lister ◽  
Andres Garcia

A number of studies indicate that tropical arthropods should be particularly vulnerable to climate warming. If these predictions are realized, climate warming may have a more profound impact on the functioning and diversity of tropical forests than currently anticipated. Although arthropods comprise over two-thirds of terrestrial species, information on their abundance and extinction rates in tropical habitats is severely limited. Here we analyze data on arthropod and insectivore abundances taken between 1976 and 2012 at two midelevation habitats in Puerto Rico’s Luquillo rainforest. During this time, mean maximum temperatures have risen by 2.0 °C. Using the same study area and methods employed by Lister in the 1970s, we discovered that the dry weight biomass of arthropods captured in sweep samples had declined 4 to 8 times, and 30 to 60 times in sticky traps. Analysis of long-term data on canopy arthropods and walking sticks taken as part of the Luquillo Long-Term Ecological Research program revealed sustained declines in abundance over two decades, as well as negative regressions of abundance on mean maximum temperatures. We also document parallel decreases in Luquillo’s insectivorous lizards, frogs, and birds. While El Niño/Southern Oscillation influences the abundance of forest arthropods, climate warming is the major driver of reductions in arthropod abundance, indirectly precipitating a bottom-up trophic cascade and consequent collapse of the forest food web.


ZooKeys ◽  
2018 ◽  
Vol 779 ◽  
pp. 119-145
Author(s):  
Eduardo Morano ◽  
Raul Bonal

The new species Araneusbonali Morano, sp. n. (Araneae, Araneidae) collected in central and western Spain is described and illustrated. Its novel status is confirmed after a thorough revision of the literature and museum material from the Mediterranean Basin. The taxonomy of Araneus is complicated, but both morphological and molecular data supported the genus membership of Araneusbonali Morano, sp. n. Additionally, the species uniqueness was confirmed by sequencing the barcode gene cytochrome oxidase I from the new species and comparing it with the barcodes available for species of Araneus. A molecular phylogeny, based on nuclear and mitochondrial genes, retrieved a clade with a moderate support that grouped Araneusdiadematus Clerck, 1757 with another eleven species, but neither included Araneusbonali sp. n. nor Araneusangulatus Clerck, 1757, although definitive conclusions about the relationships among Araneus species need more markers examined and a broader taxonomic coverage. The new species was collected on isolated holm oaks and forest patches within agricultural landscapes. Adults were mostly trapped on tree trunks, where their lichen-like colours favour mimicry, while juveniles were collected on tree branches. Specimens were never found either in ground traps or grass samples. This species overwinters as egg, juveniles appear in early spring, but reproduction does not take place until late summer-early autumn. Araneusbonali Morano, sp. n. was found in the same locality from where another new spider species was described. Nature management policies should thus preserve isolated trees as key refuges for forest arthropods in agricultural landscapes, as they may be hosting more unnoticed new species. After including Araneusbonali Morano, sp. n. and removing doubtful records and synonymies, the list of Araneus species in the Iberian Peninsula numbers eight.


2017 ◽  
Vol 391 ◽  
pp. 9-18 ◽  
Author(s):  
Beat Wermelinger ◽  
Marco Moretti ◽  
Peter Duelli ◽  
Thibault Lachat ◽  
Gianni Boris Pezzatti ◽  
...  

Author(s):  
Paul Hanson

Arthropods (e.g., insects, spiders, mites, crustaceans) are the most diverse group of organisms in the biosphere. Several families of insects (e.g., staphylinid beetles, ichneumonid wasps) contain more species than all vertebrates combined. Most arthropods do not yet have scientific names. Little is known about the life histories of most species. The insects of Costa Rica and neighboring Panama have received more attention than any other tropical region of comparable size, but it is mainly limited to species descriptions and distribution records. I and colleagues who have contributed subsections throughout this chapter draw upon the published studies from Monteverde, but no attempt has been made to list all insect species reported from Monteverde. This chapter differs from others in that some contributors focus on tropical cloud forests in general rather than on only Monteverde. The justification is that for most insects, altitude is the single most important factor determining distribution. Most species show widespread geographic distributions but restricted altitudinal distributions. One intensively sampled cloud forest in Costa Rica is Zurqui de Moravia (1600 m), from which considerable information is drawn for this chapter. We have included most of the insect groups that have been studied in Monteverde: spittlebugs, treehoppers, rove beetles, scarab beetles, longhorn beetles, butterflies, social wasps, ants, and bees. Major orders of insects not included from this chapter are mayflies, cockroaches, termites, earwigs, barklice, thrips, and lacewings. Termites and other social insects are less prominent in cloud forests than in lowland forests. Spiders are the only noninsect arthropods included; the information is from a cloud forest at a similar elevation in Colombia. Cloud forests are defined here as forests higher than 1200 m. Our knowledge of cloud forest arthropods is so fragmentary that generalizations are premature. This chapter provides preliminary information on natural history to stimulate entomologists to consider cloud forests as distinct from lowland rain forests. We include practical information on the conservation of cloud forest arthropods, many of which are vital components of the ecosystem.


1999 ◽  
Vol 28 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Jonathan D. Majer ◽  
Harry F. Recher

Vast areas of Brazil are being planted to Eucalyptus in order to provide renewable sources of timber, charcoal and cellulose. Although the rapid growth and productivity of various Eucalyptus species undoubtedly relaxes the pressure on logging of native forests, there are ecological costs. Firstly, some eucalypt species are vulnerable to pest outbreaks. A large number of native Lepidoptera, Coleoptera and leaf-cutting ants (Atta spp.), some of which have become pests, have been found on eucalypts growing in Brazil. Probably, the diverse myrtaceous flora of South America supports a fauna that can adapt to the introduced Eucalyptus species. Secondly, the leaf litter produced under Eucalyptus plantations differs substantially from that of native forests both in terms of its physical structure and chemistry, posing a range of problems for the native decomposer fauna. If microarthropod diversity is reduced, nutrient cycling could be impeded under eucalypt plantations. Thirdly, native forest canopies support a massive diversity and biomass of arthropods on which many birds, reptiles and mammals depend for food. The evidence is that invertebrate biomass and diversity are greatly reduced in the canopies of exotic eucalypt plantations. This, in turn, reduces the food-base on which forest arthropods and other animals depend, and hence their conservation status. This paper reviews the evidence for adverse ecological effects in Brazilian eucalypt plantations and suggests ways in which Brazil might meet its forestry needs, while conserving forest invertebrates and the vertebrates that depend on them.


Sign in / Sign up

Export Citation Format

Share Document