scholarly journals Investigation on Applicability and Limitation of Cosine Similarity-Based Structural Condition Monitoring for Gageocho Offshore Structure

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 663
Author(s):  
Byungmo Kim ◽  
Jaewon Oh ◽  
Cheonhong Min

The key to coping with global warming is reconstructing energy governance from carbon-based to sustainable resources. Offshore energy sources, such as offshore wind turbines, are promising alternatives. However, the abnormal climate is a potential threat to the safety of offshore structures because construction guidelines cannot embrace climate outliers. A cosine similarity-based maintenance strategy may be a possible solution for managing and mitigating these risks. However, a study reporting its application to an actual field structure has not yet been reported. Thus, as an initial study, this study investigated whether the technique is applicable or whether it has limitations in the real field using an actual example, the Gageocho Ocean Research Station. Consequently, it was found that damage can only be detected correctly if the damage states are very similar to the comparison target database. Therefore, the high accuracy of natural frequencies, including environmental effects, should be ensured. Specifically, damage scenarios must be carefully designed, and an alternative is to devise more efficient techniques that can compensate for the present procedure.

Author(s):  
Weifei Hu ◽  
Zhiyu Jiang ◽  
Yeqing Wang

Offshore structures are subject to severe environmental conditions and require high operating and maintenance costs. At the design stage of an offshore structure, it is necessary to perform load analysis and to consider representative environmental conditions characterized by statistical models. However, many available joint distribution models of the environmental parameters can only describe the correlation of these parameters in a very restricted form. The use of simple probabilistic models without correctly addressing their correlation may lead to significant bias in the reliability analysis. Here, the correlation between three offshore environmental parameters including the significant wave height, wave peak period, and mean wind speed is described by copula. The copula density functions and theoretical derivations of copula correlation parameters using actual sea state data are provided for general applications of reliability analysis of offshore structures. Hindcast data of two representative sites are used to fit the best copula. The developed copula-based joint distribution can be used for accurate reliability analysis of offshore structures considering long-term fatigue loads and extreme responses.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Daniel Filipe Campos ◽  
Aníbal Matos ◽  
Andry Maykol Pinto

AbstractThe offshore wind power industry is an emerging and exponentially growing sector, which calls to a necessity for a cyclical monitoring and inspection to ensure the safety and efficiency of the wind farm facilities. Thus, the emersed (aerial) and immersed (underwater) scenarios must be reconstructed to create a more complete and reliable map that maximizes the observability of all the offshore structures from the wind turbines to the cable arrays, presenting a multi domain scenario.This work proposes the use of an Autonomous Surface Vehicle (ASV) to map both domains simultaneously. As such, it will produce a multi-domain map through the fusion of navigational sensors, GPS and IMU, to localize the vehicle and aid the registration process for the perception sensors, 3D Lidar and Multibeam echosounder sonar. The performed experiments demonstrate the ability of the multi-domain mapping architecture to provide an accurate reconstruction of both scenarios into a single representation using the odometry system as the initial seed to further improve the map with data filtering and registration processes. An error of 0.049 m for the odometry estimation is observed with the GPS/IMU fusion for simulated data and 0.07 m for real field tests. The multi-domain map methodology requires an average of 300 ms per iteration to reconstruct the environment, with an error of at most 0.042 m in simulation.


1984 ◽  
Vol 106 (1) ◽  
pp. 38-42 ◽  
Author(s):  
J. C. S. Yang ◽  
J. Chen ◽  
N. G. Dagalakis

The Random Decrement Technique has shown promise as an inspection technique for offshore structures. The major advantage of this technique is that it requires only measurements of the dynamic response of the structure and not the input excitation causing the response. On offshore platforms, such random input forces occur from wind, waves, and currents. The Random Decrement Technique was evaluated together with a number of other NDE techniques under the NDE round robin testing program sponsored by the United States Geological Survey and the Office of Naval Research. A series of tests, damage scenarios, were conducted on a model of an offshore structure in a blind-mode by an independent neutral agent. Test data were given to the corresponding advocates to be analyzed and interpreted to predict the damages. Initial results indicated that the Random Decrement Technique was able to identify all the damage and non-damage situations with the usage of only four accelerometers mounted on each of the legs of the structure.


Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


2021 ◽  
Vol 9 (6) ◽  
pp. 598
Author(s):  
Antoine Marty ◽  
Franck Schoefs ◽  
Thomas Soulard ◽  
Christian Berhault ◽  
Jean-Valery Facq ◽  
...  

After a few weeks, underwater components of offshore structures are colonized by marine species and after few years this marine growth can be significant. It has been shown that it affects the hydrodynamic loading of cylinder components such as legs and braces for jackets, risers and mooring lines for floating units. Over a decade, the development of Floating Offshore Wind Turbines highlighted specific effects due to the smaller size of their components. The effect of the roughness of hard marine growth on cylinders with smaller diameter increased and the shape should be representative of a real pattern. This paper first describes the two realistic shapes of a mature colonization by mussels and then presents the tests of these roughnesses in a hydrodynamic tank where three conditions are analyzed: current, wave and current with wave. Results are compared to the literature with a similar roughness and other shapes. The results highlight the fact that, for these realistic roughnesses, the behavior of the rough cylinders is mainly governed by the flow and not by their motions.


Author(s):  
Remmelt J. van der Wal ◽  
Gerrit de Boer

Offshore operations in open seas may be seriously affected by the weather. This can lead to a downtime during these operations. The question whether an offshore structure or dredger is able to operate in wind, waves and current is defined as “workability”. In recent decades improvements have been made in the hydrodynamic modelling of offshore structures and dredgers. However, the coupling of these hydrodynamic models with methods to analyse the actual workability for a given offshore operation is less developed. The present paper focuses on techniques to determine the workability (or downtime) in an accurate manner. Two different methods of determining the downtime are described in the paper. The first method is widely used in the industry: prediction of downtime on basis of wave scatter diagrams. The second method is less common but results in a much more reliable downtime estimate: determination of the ‘job duration’ on basis of scenario simulations. The analysis using wave scatter diagrams is simple: the downtime is expressed as a percentage of the time (occurrences) that a certain operation can not be carried out. This method can also be used for a combination of operations however using this approach does not take into account critical events. This can lead to a significant underprediction of the downtime. For the determination of the downtime on basis of scenario simulations long term seastate time records are used. By checking for each subsequent time step which operational mode is applicable and if this mode can be carried out the workability is determined. Past events and weather forecast are taken into account. The two different methods are compared and discussed for a simplified offloading operation from a Catenary Anchor Leg Mooring (CALM) buoy. The differences between the methods will be presented and recommendations for further applications are given.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Wave breaking is one of the major concerns for offshore structures installed in shallow waters. Impulsive breaking wave forces sometimes govern the design of such structures, particularly in areas with a sloping sea bottom. Most of the existing offshore wind turbines were installed in shallow water regions. Among fixed-type support structures for offshore wind turbines, jacket structures have become popular in recent times as the water depth for fixed offshore wind structures increases. However, there are many uncertainties in estimating breaking wave forces on a jacket structure, as only a limited number of past studies have estimated these forces. Present study is based on the WaveSlam experiment carried out in 2013, in which a jacket structure of 1:8 scale was tested for several breaking wave conditions. The total and local wave slamming forces are obtained from the experimental measured forces, using two different filtering methods. The total wave slamming forces are filtered from the measured forces using the empirical mode decomposition (EMD) method, and local slamming forces are obtained by the frequency response function (FRF) method. From these results, the peak slamming forces and slamming coefficients on the jacket members are estimated. The breaking wave forces are found to be dependent on various breaking wave parameters such as breaking wave height, wave period, wave front asymmetry, and wave-breaking positions. These wave parameters are estimated from the wave gauge measurements taken during the experiment. The dependency of the wave slamming forces on these estimated wave parameters is also investigated.


Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


Author(s):  
Andrew Cornett ◽  
Scott Baker

The objectives of this work are to close some of the knowledge gaps facing designers tasked with designing new offshore structures or upgrading older structures located in shallow waters and exposed to energetic multi-directional waves generated by passing hurricanes or cyclones. This will be accomplished by first investigating and characterizing the natural variability of the maximum wave heights and crest elevations found in multiple 2-hour long realizations of several short-crested shallow-water near-breaking seastates. Following this, the variability and repeatability of peak pressures and peak loads exerted on a 1/35 scale model of a gravity-based offshore structure are explored. The analysis focuses on establishing extreme value distributions for each realization, quantifying their variability, and exploring how the variability is diminished when results from multiple seastate realizations and repeated tests are combined. The importance of considering multiple realizations of a design wave condition when estimating peak values for use in design is investigated and highlighted.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/16bCsMd0OMc


Author(s):  
Syed Danish Hasan ◽  
Nazrul Islam ◽  
Khalid Moin

The response of offshore structures under seismic excitation in deep water conditions is an extremely complex phenomenon. Under such harsh environmental conditions, special offshore structures called articulated structures are feasible owing to reduced structural weight. Whereas, conventional offshore structure requires huge physical dimensions to meet the desired strength and stability criteria, therefore, are uneconomical. Articulated offshore towers are among the compliant offshore structures. These structures consist of a ballast chamber near the bottom hinge and a buoyancy chamber just below the mean sea level, imparting controlled movement against the environmental loads (wave, currents, and wind/earthquake). The present study deals with the seismic compliance of a double-hinged articulated offshore tower to three real earthquakes by solving the governing equations of motion in time domain using Newmark’s-β technique. For this purpose Elcentro 1940, Taft 1952 and Northridge 1994 earthquake time histories are considered. The tower is modeled as an upright flexible pendulum supported to the sea-bed by a mass-less rotational spring of zero stiffness while the top of it rigidly supports a deck in the air (a concentrated mass above water level). The computation of seismic and hydrodynamic loads are performed by dividing the tower into finite elements with masses lumped at the nodes. The earthquake response is carried out by random vibration analysis, in which, seismic excitations are assumed to be a broadband stationary process. Effects of horizontal ground motions are considered in the present study. Monte Carlo simulation technique is used to model long crested random wave forces. Effect of sea-bed shaking on hydrodynamic modeling is considered. The dynamic equation of motion is formulated using Lagrangian approach, which is based on energy principle. Nonlinearities due to variable submergence and buoyancy, added mass associated with the geometrical non-linearities of the system are considered. The results are expressed in the form of time-histories and PSDFs of deck displacement, rotational angle, base and hinge shear, and the bending moment. The outcome of the response establishes that seismic sea environment is an important design consideration for successful performance of hinges, particularly, if these structures are situated in seismically active zones of the world’s ocean.


Sign in / Sign up

Export Citation Format

Share Document