scholarly journals Preplay Communication in Multi-Player Sequential Games: An Overview of Recent Results

Author(s):  
Andrea Celli

AbstractThe computational study of game-theoretic solution concepts is fundamental to describe the optimal behavior of rational agents interacting in a strategic setting, and to predict the most likely outcome of a game. Equilibrium computation techniques have been applied to numerous real-world problems. Among other applications, they are the key building block of the best poker-playing AI agents [5, 6, 27], and have been applied to physical and cybersecurity problems (see, e.g., [18, 20, 21, 30–32]).

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1292
Author(s):  
Neziha Akalin ◽  
Amy Loutfi

This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field.


2019 ◽  
Vol 2019 (3) ◽  
pp. 170-190
Author(s):  
Archita Agarwal ◽  
Maurice Herlihy ◽  
Seny Kamara ◽  
Tarik Moataz

Abstract The problem of privatizing statistical databases is a well-studied topic that has culminated with the notion of differential privacy. The complementary problem of securing these differentially private databases, however, has—as far as we know—not been considered in the past. While the security of private databases is in theory orthogonal to the problem of private statistical analysis (e.g., in the central model of differential privacy the curator is trusted) the recent real-world deployments of differentially-private systems suggest that it will become a problem of increasing importance. In this work, we consider the problem of designing encrypted databases (EDB) that support differentially-private statistical queries. More precisely, these EDBs should support a set of encrypted operations with which a curator can securely query and manage its data, and a set of private operations with which an analyst can privately analyze the data. Using such an EDB, a curator can securely outsource its database to an untrusted server (e.g., on-premise or in the cloud) while still allowing an analyst to privately query it. We show how to design an EDB that supports private histogram queries. As a building block, we introduce a differentially-private encrypted counter based on the binary mechanism of Chan et al. (ICALP, 2010). We then carefully combine multiple instances of this counter with a standard encrypted database scheme to support differentially-private histogram queries.


2018 ◽  
Vol 11 (3) ◽  
pp. 390 ◽  
Author(s):  
Basar Ogun ◽  
Çigdem Alabas-Uslu

Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time manufacturing and delivery of these products. In this study, a batch scheduling problem is addressed to provide on-time completion of customer orders in the environment of lean manufacturing. The problem is to optimize partitioning of product components into batches and scheduling of the resulting batches where each customer order is received as a set of products made of various components.Design/methodology/approach: Three different mathematical models for minimization of total earliness and tardiness of customer orders are developed to provide on-time completion of customer orders and also, to avoid from inventory of final products. The first model is a non-linear integer programming model while the second is a linearized version of the first. Finally, to solve larger sized instances of the problem, an alternative linear integer model is presented.Findings: Computational study using a suit set of test instances showed that the alternative linear integer model is able to solve all test instances in varying sizes within quite shorter computer times comparing to the other two models. It was also showed that the alternative model can solve moderate sized real-world problems.Originality/value: The problem under study differentiates from existing batch scheduling problems in the literature since it includes new circumstances which may arise in real-world applications. This research, also, contributes the literature of batch scheduling problem by presenting new optimization models.


Nanoscale ◽  
2021 ◽  
Author(s):  
Antonios Raptakis ◽  
Arezoo Dianat ◽  
Alexander Croy ◽  
Gianaurelio Cuniberti

This computational study establishes a correlation between the elastic properties of COFs and their building-blocks towards the rational design of new materials with tailored properties.


Author(s):  
W. E. BLANZ ◽  
SHERI L. GISH

An image segmentation system which uses a connectionist classifier architecture as a central building block is described in this paper. The complete system, which consists of a feature extraction module and the connectionist classifier module, has been designed and implemented in digital VLSl; system architectural aspects as well as the procedure of adaptation of the system to different segmentation problems are discussed. The performance of the segmentation system on real world problems is demonstrated using scenes from industrial inspection, texture recognition, and combustion chamber research tasks.


2020 ◽  
Vol 12 (17) ◽  
pp. 7174
Author(s):  
Xiaoxiao Chang ◽  
Guangye Xu ◽  
Qian Wang ◽  
Yongguang Zhong

This paper mainly aims at investigating the governments’ take-back policy of penalty or subsidy that motivates eco-design or remanufacturing. For this purpose, we consider a two-stage Stackelberg game between a government and a manufacturer. The government first decides to impose a take-back penalty or offer a take-back subsidy, and then the manufacturer selects to remanufacture or invest in eco-design as a response to the take-back policy. Upon analyzing and comparing game equilibrium, we find that the government prefers to offer a subsidy policy for eco-design and to impose a penalty policy for remanufacturing. The manufacturer will decide on investing in eco-design when the monetary value of the environmental impact of landfill and eco-design coefficient is medium. However, if the eco-design coefficient is high, the manufacturer practices remanufacturing instead of eco-design whether penalized and subsidized. The present study provides a set of guidelines in practical managerial recommendations for governments and manufacturers.


2007 ◽  
Vol 09 (02) ◽  
pp. 377-409 ◽  
Author(s):  
JOHAN VAN BENTHEM

Game-theoretic solution concepts describe sets of strategy profiles that are optimal for all players in some plausible sense. Such sets are often found by recursive algorithms like iterated removal of strictly dominated strategies in strategic games, or backward induction in extensive games. Standard logical analyses of solution sets use assumptions about players in fixed epistemic models for a given game, such as mutual knowledge of rationality. In this paper, we propose a different perspective, analyzing solution algorithms as processes of learning which change game models. Thus, strategic equilibrium gets linked to fixed-points of operations of repeated announcement of suitable epistemic statements. This dynamic stance provides a new look at the current interface of games, logic, and computation.


Sign in / Sign up

Export Citation Format

Share Document