horseshoe orbits
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 3)

2020 ◽  
Vol 493 (3) ◽  
pp. 4382-4399 ◽  
Author(s):  
Colin P McNally ◽  
Richard P Nelson ◽  
Sijme-Jan Paardekooper ◽  
Pablo Benítez-Llambay ◽  
Oliver Gressel

ABSTRACT We present simulations of low-mass planet–disc interactions in inviscid three-dimensional discs. We show that a wind-driven laminar accretion flow through the surface layers of the disc does not significantly modify the migration torque experienced by embedded planets. More importantly, we find that 3D effects lead to a dramatic change in the behaviour of the dynamical corotation torque compared to earlier 2D theory and simulations. Although it was previously shown that the dynamical corotation torque could act to slow and essentially stall the inward migration of a low-mass planet, our results in 3D show that the dynamical corotation torque has the complete opposite effect and speeds up inward migration. Our numerical experiments implicate buoyancy resonances as the cause. These have two effects: (i) they exert a direct torque on the planet, whose magnitude relative to the Lindblad torque is measured in our simulations to be small; (ii) they torque the gas librating on horseshoe orbits in the corotation region and drive evolution of its vortensity, leading to the negative dynamical corotation torque. This indicates that at low turbulent viscosity, the detailed vertical thermal structure of the protoplanetary disc plays an important role in determining the migration behaviour of embedded planets. If this result holds up under a more refined treatment of disc thermal evolution, then it has important implications for understanding the formation and early evolution of planetary systems.


2019 ◽  
Vol 631 ◽  
pp. A6 ◽  
Author(s):  
Adrien Leleu ◽  
Gavin A. L. Coleman ◽  
Sareh Ataiee

Despite the existence of co-orbital bodies in the solar system, and the prediction of the formation of co-orbital planets by planetary system formation models, no co-orbital exoplanets (also called trojans) have been detected thus far. In this paper we investigate how a pair of co-orbital exoplanets would fare during their migration in a protoplanetary disc. To this end, we computed a stability criterion of the Lagrangian equilibria L4 and L5 under generic dissipation and slow mass evolution. Depending on the strength and shape of these perturbations, the system can either evolve towards the Lagrangian equilibrium, or tend to increase its amplitude of libration, possibly all the way to horseshoe orbits or even exiting the resonance. We estimated the various terms of our criterion using a set of hydrodynamical simulations, and show that the dynamical coupling between the disc perturbations and both planets have a significant impact on the stability: the structures induced by each planet in the disc perturb the dissipative forces applied on the other planets over each libration cycle. Amongst our results on the stability of co-orbitals, several are of interest to constrain the observability of such configurations: long-distance inward migration and smaller leading planets tend to increase the libration amplitude around the Lagrangian equilibria, while leading massive planets and belonging to a resonant chain tend to stabilise it. We also show that, depending on the strength of the dissipative forces, both the inclination and the eccentricity of the smaller of the two co-orbitals can be significantly increased during the inward migration of the co-orbital pair, which can have a significant impact on the detectability by transit of such configurations.


2019 ◽  
Vol 622 ◽  
pp. A97 ◽  
Author(s):  
Lei Zhou ◽  
Yang-Bo Xu ◽  
Li-Yong Zhou ◽  
Rudolf Dvorak ◽  
Jian Li

The only discovery of Earth Trojan 2010 TK7 and the subsequent launch of OSIRIS-REx have motived us to investigate the stability around the triangular Lagrange points of the Earth, L4 and L5. In this paper we present detailed dynamical maps on the (a0, i0) plane with the spectral number (SN) indicating the stability. Two main stability regions, separated by a chaotic region arising from the ν3 and ν4 secular resonances, are found at low (i0 ≤ 15°) and moderate (24 ° ≤i0 ≤ 37°) inclinations, respectively. The most stable orbits reside below i0 = 10° and they can survive the age of the solar system. The nodal secular resonance ν13 could vary the inclinations from 0° to ∼10° according to their initial values, while ν14 could pump up the inclinations to ∼20° and upwards. The fine structures in the dynamical maps are related to higher degree secular resonances, of which different types dominate different areas. The dynamical behaviour of the tadpole and horseshoe orbits, reflected in their secular precession, show great differences in the frequency space. The secular resonances involving the tadpole orbits are more sensitive to the frequency drift of the inner planets, thus the instabilities could sweep across the phase space, leading to the clearance of tadpole orbits. We are more likely to find terrestrial companions on horseshoe orbits. The Yarkovsky effect could destabilize Earth Trojans in varying degrees. We numerically obtain the formula describing the stabilities affected by the Yarkovsky effect and find the asymmetry between the prograde and retrograde rotating Earth Trojans. The existence of small primordial Earth Trojans that avoid being detected but survive the Yarkovsky effect for 4.5 Gyr is substantially ruled out.


2017 ◽  
Vol 362 (11) ◽  
Author(s):  
Jaime Burgos-Garcia ◽  
Abimael Bengochea

2016 ◽  
Vol 54 (6) ◽  
pp. 475-482
Author(s):  
B. B. Kreisman

2014 ◽  
Vol 173 ◽  
pp. 234-239 ◽  
Author(s):  
Valentín Mendoza
Keyword(s):  

2013 ◽  
Vol 348 (2) ◽  
pp. 403-415 ◽  
Author(s):  
Abimael Bengochea ◽  
Jorge Galán ◽  
Ernesto Pérez-Chavela

2012 ◽  
Vol 426 (4) ◽  
pp. 3051-3056 ◽  
Author(s):  
Matija Ćuk ◽  
Douglas P. Hamilton ◽  
Matthew J. Holman

Sign in / Sign up

Export Citation Format

Share Document