Emerging mechanisms of ecosystem functioning in a warmer and drier world

Author(s):  
José M. Grünzweig ◽  
Hans J. De Boeck ◽  
Ana Rey ◽  
Omer Tzuk ◽  
Ehud Meron ◽  
...  

<p>Ecosystems are expected to face a significantly warmer and drier climate in the coming decades. Experiments have tried to unravel drought responses of ecosystems in mesic and humid biomes, but the structure and functioning of these systems may change when climatic regime shifts occur. Here, we summarize major mechanisms typical of drylands and indicate how these may come into play when current mesic ecosystems face tipping points in a warmer and drier world.</p><p>These dryland mechanisms of ecosystem functioning encompass (i) processes of vegetation development, such as self-organization of vegetation patchiness and formation of biological soil crust, (ii) biologically driven biogeochemical and physiological processes, such as drying-wetting cycles and hydraulic redistribution, and (iii) abiotically driven biogeochemical processes, such as photochemical degradation of organic matter and soil hydrophobicity. We present insights from published studies and original model simulations and mapping, and formulate hypotheses on thresholds and spatial locations beyond which dryland mechanisms are expected to operate in non-xeric ecosystems. Notably, for dryland mechanisms to get activated elsewhere there is no need for non-xeric biomes to become actual drylands. With a globally increasing area exposed to gradually rising temperatures, moderate decline in precipitation, and increasing frequency, duration and intensity of extreme heat and drought events, we envision that dryland mechanisms will increasingly control ecosystem functioning in many regions of the world.</p>

2020 ◽  
Author(s):  
Philipp Gries ◽  
Karsten Schmidt ◽  
Peter Kühn ◽  
Joachim Eberle ◽  
Steffen Seitz ◽  
...  

<p>Over the last decades, a progressive glacier melting has been detected induced by climate change which cause a rapid enlargement of ice-free areas in glacier forelands in Arctic, Antarctic and Alpine regions. These recently deglaciated areas represent highly dynamic environments in terms of vegetation development and soil formation. Tundra plant communities of glacier forelands mainly consist of cryptogamic species forming biological soil crusts (BSCs) on the surface. These BSCs are known to promote the accumulation of aeolian particles and organic material being relevant to soil formation. It is important to understand both BSC development and soil formation in glacier forelands as fundamental to future development of mature tundra which contributes to an increase in soil organic carbon (SOC) and nitrogen (N) stocks in soil. The heterogeneous terrain of glacier forelands affects the spatial variation in both soil and vegetation characteristics which are additionally influenced by the distance to the glacier terminus. This study focuses on the spatial variation in soil and BSC characteristics in Arctic glacier forelands of Svalbard using multi-scale contextual soil mapping (CSM) and Euclidean distance fields (EDF). The data set comprises of soil (SOC, N, texture) and BSC characteristics (species composition, percent cover) from 168 sampling locations as well as terrain covariates (elevation, slope, aspect, curvature) at several scales using CSM and spatial covariates (EDF). Random forests (RF) are used to analyse the relationships between the covariates and soil and BSC characteristics, respectively.</p><p>Preliminary results show a good quality of the RF models (R²/RMSE) which is similar for SOC (0.41/6.19) and N (0.44/0.22). Elevation, curvature and slope at large scales are the most important covariates to explain the spatial variation in SOC and N. On large scales, these covariates represent the distance to the glacier terminus and generally explain the increase in SOC and N with increasing distance from the glacier terminus.  Additionally, elevation at small scales represents relevant issues of predominant geomorphologic features signature (e.g. moraine topography) to soil formation and BSC development. Analyses of the spatial variation and interrelationships of soil and BSC characteristics are still ongoing and further results will be presented at EGU 2020.</p>


2010 ◽  
Vol 365 (1549) ◽  
pp. 2057-2070 ◽  
Author(s):  
Fernando T. Maestre ◽  
Matthew A. Bowker ◽  
Cristina Escolar ◽  
María D. Puche ◽  
Santiago Soliveres ◽  
...  

Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


2009 ◽  
Vol 14 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Ulrich W. Ebner-Priemer ◽  
Timothy J. Trull

Convergent experimental data, autobiographical studies, and investigations on daily life have all demonstrated that gathering information retrospectively is a highly dubious methodology. Retrospection is subject to multiple systematic distortions (i.e., affective valence effect, mood congruent memory effect, duration neglect; peak end rule) as it is based on (often biased) storage and recollection of memories of the original experience or the behavior that are of interest. The method of choice to circumvent these biases is the use of electronic diaries to collect self-reported symptoms, behaviors, or physiological processes in real time. Different terms have been used for this kind of methodology: ambulatory assessment, ecological momentary assessment, experience sampling method, and real-time data capture. Even though the terms differ, they have in common the use of computer-assisted methodology to assess self-reported symptoms, behaviors, or physiological processes, while the participant undergoes normal daily activities. In this review we discuss the main features and advantages of ambulatory assessment regarding clinical psychology and psychiatry: (a) the use of realtime assessment to circumvent biased recollection, (b) assessment in real life to enhance generalizability, (c) repeated assessment to investigate within person processes, (d) multimodal assessment, including psychological, physiological and behavioral data, (e) the opportunity to assess and investigate context-specific relationships, and (f) the possibility of giving feedback in real time. Using prototypic examples from the literature of clinical psychology and psychiatry, we demonstrate that ambulatory assessment can answer specific research questions better than laboratory or questionnaire studies.


Author(s):  
Kevin Dent

In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.


2007 ◽  
Author(s):  
N. Kalezic ◽  
U. Aasa ◽  
M. Barnekow-Bergkvist ◽  
E. Lyskov

Sign in / Sign up

Export Citation Format

Share Document