apc residues
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Hiroki Kitamura ◽  
Masato Ueshima ◽  
Seungki Back ◽  
Noppharit Sutthasil ◽  
Hirofumi Sakanakura ◽  
...  

AbstractAir pollution control (APC) residues, which are known to be the byproducts of incineration treatment, exhibit a high leaching potential of toxic metals. Calcium silicate hydrate (C-S–H), which is a major hydration product of hardened cement and immobilizes toxic metal, can be formed by the reaction of Ca with pozzolanic Si in a highly alkaline environment. Toxic metals might be immobilized by the addition of pozzolanic material to APC residues (instead of using cement), which is a Ca source and provides an alkaline condition. In this study, diatomite, which mainly comprises amorphous silica (SiO2·nH2O), was investigated as a pozzolanic material for Pb immobilization in APC residues obtained from a municipal solid waste incinerator. APC residues were cured with and without the addition of diatomite at different temperatures. When diatomite was added to APC residues, pozzolanic phases such as C-S–H gel were formed via the consumption of Ca(OH)2 and CaClOH. Compared to APC residues cured without diatomite, the leaching of Pb decreased by 99% for APC residues cured for 14 days with 10% diatomite at 70 °C. The results of sequential chemical extraction showed that water-soluble Pb in APC residues was reduced from 10.3% to nearly zero by the pozzolanic reaction. Consequently, the leaching amount of Pb dropped below 0.3 mg/L (Japanese criteria for landfill disposal). Overall, these experiments provide promising results regarding the possibility of using diatomite for pretreating APC residues.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 849
Author(s):  
Waldemar Kępys ◽  
Małgorzata Śliwka ◽  
Małgorzata Pawul

Combustion in fluidised bed boilers is one of the most commonly used methods of treatment of municipal sewage sludge. Fly ash (FA) and air pollution control (APC) residues are the solid by-products generated by flue gas treatment. There are significant differences in the chemical composition of these wastes. FA is composed of mainly SiO2, P2O5, CaO and metals such as Zn, Ti, Cu, Cr, Pb and Ni. APC residues mainly contain SO3 and Na2O. The leachability tests that were carried out indicate that these wastes display very low leachability of heavy metals (for example leachability of Pb was equal 0.0004 mg·dm−3 in both wastes, leachability of Cd was equal 0.0012 mg·dm−3 in FA an 0.00004 mg·dm−3 in APC). On the other hand, very high sulphate concentrations (49,375 mg·dm−3) were found in water extract for the APC residues. In order to determine the toxicity of these wastes for plants, pot experiments with different additions of waste to the soil were carried out (on Lepidium sativum and Sinapis alba). Tests based on seeds germinations (on Lepidium sativum) in water extracts from waste (in different concentrations) were also performed. The results obtained indicate the very high toxicity of APC residues. Complete inhibition of germination and growth of the test plants was found for all concentrations of the tested waste in water extract and for all additions of waste to the soil in pot experiments. Seed germination tests on water extracts from FA did not show any toxicity of this waste. Pot tests with FA showed their toxicity only with a high (30%) addition in soil.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1025
Author(s):  
Mihail Reinhold Wächter ◽  
Ioana Ionel ◽  
Daniel Dan ◽  
Adina Negrea

Waste incineration air pollution control (APC) residues require pretreatment before landfilling because these types of residues encompass pollutants from an incineration gas stream. The environmental concerns of APC residues consist of a risk of leaching and subsequent release of potentially harmful substances that occur under environmental exposure. The stabilization/solidification (S/S) method of incineration residues is one of the most applied technologies for hazardous incineration residues. Portland cement is commonly used as a binder material in S/S for pollutant encapsulation, in order to change the hydrological characteristics of the landfilled material. Based on previous research, an innovative S/S method for APC residues is investigated, meant to replace Portland cement with cement-like material made from lignite fly ash (FA). To do this, a lab-scale landfill was created through the promoted S/S method and exposed to the environment for 12 months. Thus, this article assesses the lab-scale leaching behavior of a landfill disposal material exposed to environmental conditions and attempts to prove the promoted innovative S/S method. The results show that the replacement of Portland cement with a substitute material for utilization in the S/S method can mitigate energy consumption in the industrial cement subsector.


2020 ◽  
Vol 10 (19) ◽  
pp. 6782
Author(s):  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep M. Chimenos

In this study, a granular material (GM) derived from wastes generated in waste-to-energy plants was developed. Weathered bottom ash (WBA) and air pollution control (APC) ashes obtained from municipal solid waste incineration (MSWI) were used as raw materials. A mortar (M) with 50 wt. % of APC and 50 wt. % of Ordinary Portland Cement (OPC) CEM-I was prepared. The GM formulation was 20 wt. % M and 80 wt. % WBA. At the laboratory scale, WBA, APC, M, and crushed GM were evaluated by means of dynamic leaching (EN 12457-4) tests, and WBA, M, and crushed GM by percolation column (CEN/TS 16637) tests. The metal(loid)s analyzed were below the non-hazardous limits, regarding the requirement of the metal(loid)s released for waste revalorization. In order to simulate a road subbase real scenario, the crushed GM was tested in an experimental section (10 × 20 × 0.2 m). During a 600-day period, the leachates generated by the percolation of rainwater were collected. This research shows outstanding results regarding the metal(loid)s released for both the “accumulated” and “punctual” leachates collected. An accomplishment in the immobilization of metal(loid)s from APC residues was achieved because of the encapsulation effect of the cement. The GM formulation from both MSWI wastes can be considered an environmentally safe procedure for revalorizing APC residues.


2014 ◽  
Vol 264 ◽  
pp. 107-116 ◽  
Author(s):  
Margarida J. Quina ◽  
João C.M. Bordado ◽  
Rosa M. Quinta-Ferreira

Sign in / Sign up

Export Citation Format

Share Document