intergalactic gas
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2103 (1) ◽  
pp. 012028
Author(s):  
K N Telikova ◽  
P S Shternin ◽  
S A Balashev

Abstract We investigate evolution of physical parameters of the intergalactic medium using an analysis of Lya forest lines detected towards distant quasars. We used the enlarged sample of 98 quasars obtained with Keck/HIRES and VLT/UVES. We show that taking into account a finite spatial size of absorbers, regulated by pressure smoothing, significantly affects the inferred thermal parameters of the intergalactic gas, such as the hydrogen photoionization rate and parameters of the temperature-density relation. Using Bayesian framework we constrained for the first time the scale parameter between the Jeans length and characteristic size of the absorbers. We also discuss limitations of the method based on the analysis of the minimal broadending of Lya lines, which stem from the patchy nature of He II reionization.


Author(s):  
Z. Yan ◽  
L. van Waerbeke ◽  
T. Tröster ◽  
A. H. Wright ◽  
D. Alonso ◽  
...  

2021 ◽  
Vol 2021 (04) ◽  
pp. 059
Author(s):  
Michael Walther ◽  
Eric Armengaud ◽  
Corentin Ravoux ◽  
Nathalie Palanque-Delabrouille ◽  
Christophe Yèche ◽  
...  

2020 ◽  
Vol 501 (2) ◽  
pp. 1920-1932
Author(s):  
Avery Meiksin ◽  
Piero Madau

ABSTRACT Allowing for enhanced Lyα photon line emission from Population III dominated stellar systems in the first forming galaxies, we show the 21-cm cosmic dawn signal at 10 < $z$ < 30 may substantially differ from standard scenarios. Energy transfer by Lyα photons emerging from galaxies may heat intergalactic gas if H ii regions within galaxies are recombination bound, or cool the gas faster than by adiabatic expansion if reddened by winds internal to the haloes. In some extreme cases, differential 21-cm antenna temperatures near −500 mK may be achieved at 15 < $z$ < 25, similar to the signature detected by the EDGES 21-cm cosmic dawn experiment.


Author(s):  
V. Yu. Stetsenko ◽  
A. V. Stetsenko

The dark matter hypothesis was created to explain the reason for the preservation of stellar clusters from dispersion. The weak point of this hypothesis is the great age of space, which is 13.8 billion years. Based on experimental data, it is shown that the age of space does not exceed 10 thousand years. In this case, the hypothesis of dark matter is not needed, since stellar clusters cannot scatter in such short cosmic time. The dark energy hypothesis was created to explain the reason for the accelerated expansion of space. The basis for this phenomenon is a large amount of spectral redshift of distant luminous space objects. It is shown that this value is mainly determined by the significant absorption of light energy of distant space objects by a huge amount of intergalactic gas, and not by the movement of these objects. In this case, the hypothesis of dark energy is not needed, and space should not rapidly expand and scatter in space.


2020 ◽  
Vol 499 (1) ◽  
pp. 520-522
Author(s):  
Nick Koukoufilippas ◽  
David Alonso ◽  
Maciej Bilicki ◽  
John A Peacock

2020 ◽  
Vol 496 (4) ◽  
pp. 4372-4382 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Simeon Bird

ABSTRACT The reionization of the second electron of helium shapes the physical state of intergalactic gas at redshifts between 2 ≲ z ≲ 5. Because performing full in situ radiative transfer in hydrodynamic simulations is computationally expensive for large volumes, the physics of He ii reionization is often approximated by a uniform ultraviolet background model that does not capture the spatial inhomogeneity of reionization. We have devised a model that implements the effects of He ii reionization using semi-analytic calculations of the thermal state of intergalactic gas – a way to bypass a full radiative transfer simulation while still realizing the physics of He ii reionization that affects observables such as the Lyman α forest. Here, we present a publicly available code that flexibly models inhomogeneous He ii reionization in simulations at a negligible computational cost. Because many of the parameters of He ii reionization are uncertain, our model is customizable from a set of free parameters. We show results from this code in mp-gadget, where this model is implemented. We demonstrate the resulting temperature evolution and temperature–density relation of intergalactic gas – consistent with recent measurements and previous radiative transfer simulations. We show that the impact of He ii reionization gives rise to subtle signatures in the 1D statistics of the Lyman α forest at the level of several percent, in agreement with previous findings. The flexible nature of these simulations is ideal for studies of He ii reionization and future observations of the He ii Lyman α forest.


2020 ◽  
Vol 634 ◽  
pp. A134 ◽  
Author(s):  
Y. Götberg ◽  
S. E. de Mink ◽  
M. McQuinn ◽  
E. Zapartas ◽  
J. H. Groh ◽  
...  

Massive stars are often found in binary systems, and it has been argued that binary products boost the ionizing radiation of stellar populations. Accurate predictions for binary products are needed to understand and quantify their contribution to cosmic reionization. We investigate the contribution of stars stripped in binaries because (1) they are, arguably, the best-understood products of binary evolution, (2) we recently produced the first radiative transfer calculations for the atmospheres of these stripped stars that predict their ionizing spectra, and (3) they are very promising sources because they boost the ionizing emission of stellar populations at late times. This allows stellar feedback to clear the surroundings such that a higher fraction of their photons can escape and ionize the intergalactic medium. Combining our detailed predictions for the ionizing spectra with a simple cosmic reionization model, we estimate that stripped stars contributed tens of percent of the photons that caused cosmic reionization of hydrogen, depending on the assumed escape fractions. More importantly, stripped stars harden the ionizing emission. We estimate that the spectral index for the ionizing part of the spectrum can increase to −1 compared to ≲ − 2 for single stars. At high redshift, stripped stars and massive single stars combined dominate the He II-ionizing emission, but we expect that active galactic nuclei drive cosmic helium reionization. Further observational consequences we expect are (1) high ionization states for the intergalactic gas surrounding stellar systems, such as C IV and Si IV, and (2) additional heating of the intergalactic medium of up to a few thousand Kelvin. Quantifying these warrants the inclusion of accurate models for stripped stars and other binary products in full cosmological simulations.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 97-100 ◽  
Author(s):  
H. Umehata ◽  
M. Fumagalli ◽  
I. Smail ◽  
Y. Matsuda ◽  
A. M. Swinbank ◽  
...  

Cosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.1. Intense star formation and supermassive black-hole activity is occurring within the galaxies embedded in these structures, which are the likely sources of the elevated ionizing radiation powering the observed Lyman-α emission. Our observations map the gas in filamentary structures of the type thought to fuel the growth of galaxies and black holes in massive protoclusters.


2019 ◽  
Vol 627 ◽  
pp. A5 ◽  
Author(s):  
F. Vazza ◽  
S. Ettori ◽  
M. Roncarelli ◽  
M. Angelinelli ◽  
M. Brüggen ◽  
...  

Detecting the thermal and non-thermal emission from the shocked cosmic gas surrounding large-scale structures represents a challenge for observations, as well as a unique window into the physics of the warm-hot intergalactic medium. In this work, we present synthetic radio and X-ray surveys of large cosmological simulations in order to assess the chances of jointly detecting the cosmic web in both frequency ranges. We then propose best observing strategies tailored for existing (LOFAR, MWA, and XMM) or future instruments (SKA-LOW and SKA-MID, Athena, and eROSITA). We find that the most promising targets are the extreme peripheries of galaxy clusters in an early merging stage, where the merger causes the fast compression of warm-hot gas onto the virial region. By taking advantage of a detection in the radio band, future deep X-ray observations will probe this gas in emission, and help us to study plasma conditions in the dynamic warm-hot intergalactic medium with unprecedented detail.


Sign in / Sign up

Export Citation Format

Share Document